

Kooragang Island Billboards

Geotechnical and contamination report

Ooh!Media Pty Limited

9 March 2022

→ The Power of Commitment

GHD Pty Ltd | ABN 39 008 488 373

GHD Tower, Level 3, 24 Honeysuckle Drive

Newcastle, New South Wales 2300, Australia

T +61 2 4979 9999 | F +61 2 9475 0725 | E ntlmail@ghd.com | ghd.com

Document status

Status	Revision	Author	Reviewer		Approved for issue				
Code	е		Name	Signature	Name	Signature	Date		
S4	0	J Sylvester / L Parkinson	S Mackenzie / A Monkley	1	A Monkley	1	09/03/2022		

© GHD 2022

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1.	Introd	luction	1
	1.1	Limitations	2
2.	Koora	ngang Island background	3
3.	Metho	odology	4
	3.1	Geotechnical investigation	4
	3.2	Contamination investigation	5
4.	Inves	tigation results	6
	4.1	Subsurface conditions	6
	4.2	Laboratory test results	6
5.	Discu	ssion and recommendations	10
	5.1	Geotechnical model	10
	5.2	Footing selection	10
	5.3	Geotechnical design parameters	10
	5.4	Footing inspection and testing	11
	5.5	Earthquake loads	11
	5.6	Exposure classification	11
	5.7	Acid sulphate soils	12
	5.8	Contamination	12
Tak	ole in	ıdex	
Table	e 3.1	Geotechnical laboratory testing schedule	4
Table	e 4.1	Atterberg limit, Emerson and particle size distribution laboratory test results	6
Table	e 4.2	Soil aggressivity laboratory test results	7
Table	e 4.3	Action criteria for ASS treatment	8
Table	e 5.1	Geotechnical model	10
Table		Preliminary geotechnical parameters for CFA piles	11
Table	e 5.3	Exposure classifications	11
Fig	ure i	ndex	
Figur	e 1.1	Site locations at Teal Street (one) and Cormorant Road (two)	1
Figur	e 2.1	Recent (2020) and historic (1958) aerial image, NSW Government	3

Appendices

Appendix A General Notes and Standard Sheets

Appendix B Survey plans Appendix C Borehole logs

Appendix D Geotechnical laboratory test results

Appendix E Contamination laboratory result summary tables

1. Introduction

This report presents the results of a geotechnical and contamination investigation for two proposed billboards on Kooragang Island for Ooh!Media. The billboards are proposed on land owned by the Port of Newcastle (PoN). One billboard is it to be located along the northern side of Teal Street and the other along Cormorant Road, as shown in Figure 1.1.

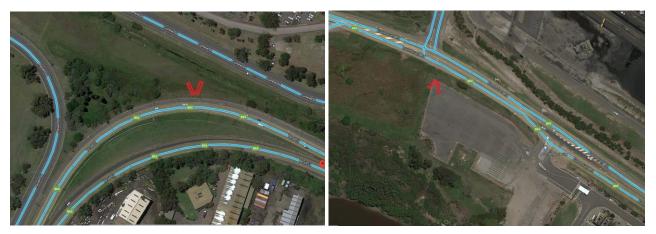


Figure 1.1 Site locations at Teal Street (one) and Cormorant Road (two)

Geotechnical and contamination assessment is required to inform detailed design and construction of the billboards. We understand each billboard will comprise two signs, each around 8.5 m in length and up to 8 m in height above the existing ground surface.

This report present the factual results of the investigation along with commentary relating to:

- Subsurface conditions
- Suitable footing systems and founding conditions
- Geotechnical design parameters for deep (piled) foundations
- Soil aggressivity with reference to Australian Standard AS 2159-2009
- Presence (or otherwise) of potential or actual acid sulphate soils and recommendation for further assessment
- Potential risk of contamination to human health and/or the environment and recommendations for management and disposal of soils

This report should be read in conjunction with the General Notes in Appendix A.

1.1 Limitations

This report has been prepared by GHD for Ooh!Media Pty Limited and may only be used and relied on by Ooh!Media Pty Limited for the purpose agreed between GHD and Ooh!Media Pty Limited as set out in this report.

GHD otherwise disclaims responsibility to any person other than Ooh!Media Pty Limited arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on:

- Conditions encountered and information reviewed at the date of preparation of the report. GHD has no
 responsibility or obligation to update this report to account for events or changes occurring subsequent to the
 date that the report was prepared.
- Assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.
- Information obtained from, and testing undertaken at or in connection with, specific sample points.
 Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

2. Kooragang Island background

Kooragang's industrial history includes land reclamation commencing in the 1950s, shown in Figure 2.1.

Subsurface conditions at Kooragang typically comprise fill comprising dredged sand with gravel to cobble size waste material (e.g. slag, timber, ballast) overlying natural soils underlying the fill and dredged sand, or at the surface where filling has not occurred, comprise soils of estuarine and marine depositional origin, including soft clays and loose sand, with sand density increasing with depth. Sedimentary bedrock levels vary between 10 m and greater than 50 m.

The proposed billboard locations are mapped as disturbed terrain¹² with respect to acid sulfate soils³. The harbour, where dredged fill material was sourced, is mapped as a low probability of acid sulfate soils and undisturbed estuarine areas around the island are mapped as having a high probability of occurrence of acid sulfate soils. As such, there is potential at Kooragang for both fill and natural soils to include actual or potential acid sulfate soils.

Figure 2.1 Recent (2020) and historic (1958) aerial image, NSW Government

¹ Matthei L.E., 1995, Soil Landscapes of the Newcastle 1:100,000 Sheet map and report, NSW Department of Land and Water Conservation, Sydney, via eSpade

² Colquhoun G.P., Hughes K.S., Deyssing L., Ballard J.C., Folkes C.B, Phillips G., Troedson A.L. & Fitzherbert J.A. 2021. New South Wales Seamless Geology dataset, version 2.1 [Digital Dataset]. Geological Survey of New South Wales, Department of Regional NSW, Maitland via MinView

³ Naylor, SD, Chapman, GA, Atkinson, G, Murphy CL, Tulau MJ, Flewin TC, Milford HB, Morand DT, 1998, Guidelines for the Use of Acid Sulfate Soil Risk Maps, 2nd ed., Department of Land and Water Conservation, Sydney via eSpade

3. Methodology

3.1 Geotechnical investigation

Investigation for the proposed billboards was undertaken on 16 December 2021 and comprised drilling of two boreholes. Borehole BH01 at Cormorant Road was drilled to 9.9 m and BH02 at Teal Street was drilled to 9.8 m depth. Borehole locations are shown in the survey in Appendix B and the below photos.

Photo 1

Teal Street borehole (BH02)

Photo 2

Cormorant Road borehole (BH01)

Boreholes were drilled with a truck mounted geotechnical drilling rig using solid flight auger and rotary washboring techniques to the limit of investigation. Standard Penetrometer Tests (SPTs) were conducted at 1.5 m intervals to provide an assessment of soil strength and correlation with geotechnical parameters. SPT samples were retained for laboratory analysis and separate contamination samples were collected for laboratory testing.

Subsurface investigation was supervised on a full-time basis by an experienced Engineering Geologist responsible for locating the boreholes, logging encountered strata, directing in-situ testing and collecting representative samples. The logging was carried out in accordance with Australian Standard AS 1726-2017.

The borehole logs are provided in Appendix C and should be read in conjunction with the Standard Sheets provided in Appendix A.

Geotechnical soil samples collected during the investigation were transported to GHD's NATA accredited geotechnical laboratory or a subcontracted NATA registered environmental laboratory.

A summary of the geotechnical tests completed is provided below.

Table 3.1 Geotechnical laboratory testing schedule

Laboratory Test	Quantity
Atterberg limits	4
Soil aggressivity suite (Chloride, Sulfate, pH and Electrical conductivity)	2
Field screen ASS (pH, pH _{FOX} , Ahern 2004)	10
ASS Chromium suite	2

3.2 Contamination investigation

Soil sampling was undertaken during the geotechnical subsurface investigations as discussed in Section 3.1. Investigation works were undertaken under the guidance of a suitably qualified environmental consultant and were completed in general accordance with guidelines developed or endorsed by NSW EPA.

Soil samples were collected from surface (0-0.2 m) and at 0.3-0.5 m and then every metre thereafter to the final depth of the borehole. Samples were collected directly from the sides of the borehole or the soil sod within the auger to minimise cross contamination. All re-usable sampling equipment was decontaminated between each sampling point using Neutracon solution and rinsing with tap water. New disposable Nitrile gloves were used when collecting samples.

Collected soil samples were immediately transferred to sample containers of appropriate composition, which were pre-treated in a manner appropriate for the laboratory analysis. All sample containers were clearly labelled with a sample number, sample location, sample depth and sample date. The sample containers were transferred to a chilled cooler for sample preservation prior to and during shipment to the testing laboratory.

The samples were transported under Chain of Custody (CoC) conditions to an independent and National Association of Testing Authorities (NATA) certified laboratory. Seven samples were analysed for the following potential contaminants of concern - heavy metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn), total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN), polycyclic aromatic hydrocarbons (PAH), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and asbestos.

A single Quality Assurance / Quality Control (QA/QC) intralaboratory (field) duplicate sample pair (BH02 0.4-0.5/ DU02) were collected during the investigations. No rinsate samples, trip blanks or trip spikes were collected.

4. Investigation results

4.1 Subsurface conditions

In general terms, subsurface conditions encountered during the investigation comprised fill overlying estuarine sand and clay to the limit of investigation. The more pertinent aspects of the units encountered are summarised below, with reference to existing ground surface levels.

Cormorant Road

Relevant test location: BH01

FILL encountered to 2.8 m depth comprising an asphalt surface over sand with clay and trace fine gravel; overlying

ESTUARINE SAND and CLAY comprising:

- Upper SAND, fine to coarse grained encountered as medium dense to 3.2 m.
- CLAY, high plasticity dark grey clay with inclusions of sand and shells encountered as firm to 4.0 m.
- Lower SAND, fine to coarse grained encountered as loose to 6.5 m and dense to very dense to the limit of investigation. SPT refusal was encountered from 8.5 m to the limit of investigation.

Groundwater was encountered at 2.2 m depth.

Teal Street

Relevant test location: BH02

FILL encountered to 1.7 m depth comprising sand with clay and trace of fine gravel, shells and rootlet; overlying ESTUARINE SAND and CLAY comprising:

- Upper SAND, fine to coarse grained sand encountered as medium dense to 1.8 m.
- CLAY, high plasticity dark grey clay with inclusions of sand and shells encountered as firm to 2.5 m.
- Lower SAND, fine to coarse grained sand encountered as very loose to loose to 5.5 m and medium dense to the limit of investigation. SPT refusal was encountered at the limit of investigation.

Groundwater was encountered at 1.6 m depth.

4.2 Laboratory test results

4.2.1 Geotechnical results

Geotechnical laboratory test results are summarised in Table 4.1 and Table 4.2, with test report sheets provided in Appendix D.

Table 4.1 Atterberg limit, Emerson and particle size distribution laboratory test results

Sample ID	Soil Description	Atterberg Limits (%)			Particle size distribution (%)			
		LL	PL	PI	Clay / silt	Sand	Gravel	
BH01 1.5-1.95 m	SAND	-	-	-	3	97	0	
BH01 4.0-4.45 m	SAND	NA	NP	NP	-	-	-	
BH01 6.5-6.95 m	SAND with silt	-	-	-	6	94	0	
BH02 5.5-5.95 m	SAND	-	-	-	2	98	0	

Note: Clay and silt proportions were not determined individually and are combined – i.e. percent passing 75 µm sieve.

LL = liquid limit PL = plastic limit PI = plasticity index

NA = Not applicable NP = Not plastic

Table 4.2 Soil aggressivity laboratory test results

Sample ID	Soil Description	рН	CI	SO ₄	EC
			(mg/kg)	(mg/kg)	(µS/cm)
BH01 1.5 -1.95 m	SAND	8.9	<10	<10	70
BH02 5.5-5.95 m	SAND	7.5	<10	600	330

4.2.2 Contamination results

4.2.2.1 Assessment criteria

This assessment was undertaken with reference to the relevant guidelines made or approved by the NSW EPA.

- NEPC (2013). National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999.
 National Environment Protection Council, as amended in May 2013
- NSW EPA (2020). Contaminated land guidelines: Consultants Reporting on Contaminated Land. New South Wales Environment Protection Authority, 2020
- NSW EPA (2014) Waste Classification Guidelines: Part 1 Classifying Waste

The main objective of the contamination assessment was to assess if soils present a risk to human health and the environment during construction activities. As the sites are to be used for commercial/industrial purposes, the following assessment criteria, which are sourced from Schedule B1 of the NEPM 1999 (Amendment 2013), have been considered:

- Human Health:
 - Health Investigation Level (HIL) Commercial/Industrial (HIL D)
 - Health Screening Levels (HSL) for Vapour Intrusion for 0 to <2 m sand soils (HSL D)
- Ecological:
 - Ecological Investigation Level (EILs) for commercial/industrial
 - Ecological Screening Levels (ESLs) for TRH, BTEX and benzo(a)pyrene fractions –commercial / industrial (both coarse and fine soil textures

The application of EILs is dependent on site specific soil characteristics including pH, cation exchange capacity (CEC) and clay content. As these soil characteristics have not been assessed to date, the following assumptions were made:

- Soils were assumed to have a low range CEC, as such, a CEC of 5 cmol_c/kg has been assumed for the selection of copper, nickel and zinc criteria.
- Soils across the site are assumed to be basic. Based on this assumption, a pH range of 7.5 has been selected for zinc and copper criteria.
- For selection of the Cr III criterion, a clay content of 5 % has been assumed. The selection of Cr III criterion is not CEC or pH dependent.

4.2.2.2 Waste classification

The chemical concentrations pertaining to soil samples collected from designated stockpiles will be compared to the criteria outlined in Table 1 of the NSW EPA (2014) *Waste Classification Guidelines: Part 1 Classifying Waste*. The guidelines provide relevant criteria for assessing and classifying solid (non-liquid) wastes. The classification process for solid wastes also focuses on the potential for the waste to release chemical contaminants into the environment through contact with liquids (leachates).

The method used to chemically assess waste is the specific contaminant concentration (SCC) test. Where the SCC value exceeds the specified contaminant threshold (CT) value, further assessment using toxicity characteristic leaching procedure (TCLP) may be used to determine the total concentration of each contaminant in the waste sample and its leachability. The guidelines set different maximum levels for the CT of each contaminant and its leachability, in order for waste to be classified as either general solid waste or restricted solid waste. If the level exceeds the restricted solid waste criteria, the material is classified as hazardous waste.

4.2.2.3 Results

Laboratory reports and result tables are presented in Appendix D and Appendix E.

Health criteria

Concentrations of contaminants were either below the laboratory limit of reporting (LOR) or the nominated health assessment criteria (HIL D/HSL D) for all samples analysed.

Based on the results there is a low potential for soils to be a significant risk to the health of workers/users of the Site.

Ecological criteria

Concentrations of contaminants were either below the laboratory limit of reporting (LOR) or the nominated assessment criteria (EILs/ESLs)

Based on the results there is a low potential for soils to be a significant risk to the surrounding environment.

Waste Classification

All results were reported below the NSW EPA (2014) General Solid Waste CT1 (No Leaching).

Based on the results the soils would be classified as general solid waste. However, given PASS has been detected in soil samples, soils would be classified as PASS and may need treatment prior to disposal.

4.2.3 Acid sulfate soils results

4.2.3.1 Assessment criteria

The ASSMAC (1998) action criteria for treatment of ASS have been adopted and used to assess the net acidity in each soil sample. The criteria are presented in Table 4.3.

When analytical results exceed the action criteria, a treatment regime and management plan for the materials is triggered. For disturbances of less than 1000 tonnes the action criteria vary according to the texture of the material, however if more than 1000 tonnes is to be disturbed all action criteria are the same: 0.03 for S% and 18 mol H+/tonne for acid. As spoil generated from this works is estimated to be less than 1000 tonnes these action criteria have been selected.

Table 4.3 Action criteria for ASS treatment

Soil texture	Clay	< 1000 tonnes di	sturbed	> 1000 tonnes disturbed		
	content %	Sulfur Content %	Acid mol/Tonne	Sulfur content %	Acid mol/Tonne	
Coarse (sands-gravels)	≤ 5	0.03	18			
Medium (sandy loam-light clay)	5 - 40	0.06	36	0.03	18	
Fine (medium to heavy clays, silty clays)	≥ 40	0.10	62			

Note: Bold indicates selected criteria

4.2.3.2 Results

Results from the ASS field screening are presented in Appendix E. In summary:

- Values for pH_F were neutral to alkaline ranging from 6.8 to 9.2
- Values for pH_{Fox} were acidic to alkaline ranging from 2.3 to 8.6
- The ΔpH, defined as pH_F minus pH_{Fox}, ranged from 0.1 to 6.8

Chromium Reducible Sulfur (CRS) ASS suite analysis was undertaken on the four samples which reported the highest change in pH. With results as follows:

- ASS Acidity Trail results were reported below the detection limit
- ASS Potential Acidity results ranged from 46 340 mole H+/t and 0.074 -0.55 %S

4.2.4 Quality assurance and quality control

Laboratory quality assurance and quality control

The results reported indicate that the laboratory was achieving levels of performance within their recommended control limits during the period when the samples from this program were analysed. Based on a review of the laboratory QA/QC data, it is considered that the analytical results are reasonably representative of conditions at the time of the investigation.

5. Discussion and recommendations

5.1 Geotechnical model

A geotechnical model is an idealisation based on geotechnical interpretation. An idealised geotechnical model for this investigation is summarised in Table 5.1 below.

Table 5.1 Geotechnical model

Description	Unit	Consistency /	Depth encountered (m)			
		Relative Density	Cormorant Road	Teal Street		
FILL	Unit 1 FILL	-	0 to 2.8 m	0 to 1.7 m		
Upper SAND	Unit 2b Estuarine SAND	Medium dense	2.8 to 3.2 m	1.7 to 1.8 m		
CLAY	Unit 3 Estuarine CLAY	Firm	3.2 to 4.0 m	1.8 to 2.5 m		
Lower SAND	Unit 2a Estuarine SAND	Very loose to loose	4.0 to 6.5 m	2.5 to 5.5 m		
	Unit 2b Estuarine SAND	Medium dense	-	5.5 to >10 m		
	Unit 2c Estuarine SAND Dense to very dense		6.5 to >10 m	-		
		Groundwater	2.2 m	1.6 m		

5.2 Footing selection

Due to the deep fill and loose estuarine soils, shallow footings are not recommended. Deep footings (i.e. piles) founding within the medium dense (Unit 2b) or dense to very dense (Unit 2c) sand are recommended. As the billboard will be subject to lateral loading, the choice of pile type and size needs to also consider lateral deflection tolerance.

Due to the shallow groundwater level, challenges may be encountered with construction of conventional bored piles associated with caving of the sand soils into the excavation and management of groundwater. Furthermore, the presence of potential acid sulfate soils makes displacement piles attractive as opposed to bored piles that generate spoil.

Given the above, and subject to confirmation by detailed structural and geotechnical foundation design, driven displacement piles (steel, timber or precast concrete) or continuous flight auger (CFA) piles (which do generate some spoil) are recommended.

5.3 Geotechnical design parameters

Piles may be founded in the medium dense or better sand units (Unit 2b and 2c) a minimum three pile diameters into the unit.

For driven piles, termination depths could be determined using dynamic pile driving assessment with signal matching (wave equation analysis).

CFA piles (non-displacement) should be designed using static pile design methods (such as Poulos and Davis, 1980) and the preliminary geotechnical design parameters provided in Table 5.2.

Typical elastic moduli have been provided to assist with lateral design of piles if required.

Table 5.2 Preliminary geotechnical parameters for CFA piles

Unit		Density Index (%)	Bulk Unit Weight (kN/m³)	Apparent Friction φ (°)	Undrained shear strength S _u (kPa)	Elastic modulus - static E _s (MPa)
1	Fill	35-80	18-20	27-35	-	10 - 30
2a	Estuarine SAND – loose	15-35	14-16	25-29	-	5 - 10
2b	Estuarine SAND – medium dense	35-50	16-17	30-33	-	12 - 18
2c	Estuarine SAND – dense to very dense	65-85	18-19	35-37	-	25 - 40
3	Clay – firm	-	16-17	-	25 – 50	10 - 25

Piles should be designed and installed in accordance with Australian Standard AS 2159-2009 *Piling – Design and Installation.* The basic geotechnical reduction factor (ϕ_{gb}) , of 0.45 (for a low redundancy system) should be applied to the ultimate values and appropriate checks on pile settlement, including consideration of uplift, as appropriate. It is expected that pile settlement (serviceability) will limit allowable pile capacity rather than the ultimate geotechnical pile capacity.

5.4 Footing inspection and testing

Geotechnical design parameters and conditions used as the basis of this assessment should be confirmed by geotechnical inspection during construction. If subsurface conditions encountered during construction differ from those provided in this report, further geotechnical advice should be sought.

Inspection of footings and foundations should be undertaken by an experienced geotechnical engineer or engineering geologist to verify that the recommended foundation material has been reached and to check initial assumptions relating to foundation conditions, cleanliness, roughness and possible variations that may occur across the site.

5.5 Earthquake loads

Based on Australian Standard AS 1170.4-2007 *Earthquake Design Actions*, an acceleration coefficient of 0.11 is considered applicable for the Newcastle area.

On the basis of the typical subsurface profiles discussed above, the site sub-soil class of C_e – Shallow soil site has been assessed in accordance with AS 1170.4-2007.

5.6 Exposure classification

The soil aggression and oxidised pH (pH_{FOX}) test results above have been assessed in terms of Tables 6.4.2(C) and 6.5.2(C) of Australian Standard AS 2159-2009 *Piling – Design and Installation*. Table 5.3 below presents the soil condition and classification for each sample tested.

Table 5.3 Exposure classifications

Unit	Sample/s tested	Initial or	Clas	ssification (as per A	S2159)
		oxidised pH	Soil Condition	Concrete	Steel
1 FILL	BH01 0.9-1 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive
1 FILL	BH01 1.5 -1.95 m	Initial	Non-cohesive	Non-aggressive	Non-aggressive
1 FILL	BH01 2.5 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive
3 Estuarine CLAY	BH01 3.5 m	Oxidised	Cohesive	Mild	Non-aggressive
2a Estuarine SAND	BH01 5 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive
2a Estuarine SAND	BH01 6.5 m	Oxidised	Non-cohesive	Very severe	Severe
2c Estuarine SAND	BH01 8.5 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive

Unit	Sample/s tested	Initial or	Clas	sification (as per AS	S2159)
		oxidised pH	Soil Condition	Concrete	Steel
1 FILL	BH02 1 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive
3 Estuarine CLAY	BH02 2 m	Oxidised	Cohesive	Mild	Non-aggressive
2a Estuarine SAND	BH02 4 m	Oxidised	Non-cohesive	Very severe	Severe
2b Estuarine SAND	BH02 5.5-5.95 m	Initial	Non-cohesive	Non-aggressive	Non-aggressive
2b Estuarine SAND	BH02 6.5 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive
2b Estuarine SAND	BH02 8.5 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive
2b Estuarine SAND	BH02 9.5 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive

Oxidised pH values for two of the above samples (BH01 6.5 m and BH02 4 m) resulted in classifications more than mild. Initial pH values of 6.8 and 9.1 were oxidised with pH_{FOX} values below 3. The initial pH values would result in classifications of non-aggressive to concrete and steel. It is anticipated that these soils will remain below the water table and therefore will not become oxidised.

Therefore, recommended exposure classifications are as follows:

- Unit 1 FILL, non-aggressive to concrete and steel
- Unit 2 Estuarine SAND, non-aggressive to concrete and steel
- Unit 3 Estuarine CLAY, mild to concrete and non-aggressive to steel

5.7 Acid sulphate soils

The results of the CRS analysis indicated that acidity in the samples analysed was primarily present as unoxidized pyrite (i.e. potential acid sulfate soils (PASS)). The net acidity in all four samples exceeded the National ASS Guidance (Sullivan et al., 2018) and ASSMAC (1998) action criteria (18 mol H+/tonne equivalent 0.03 %S) for sands. Although acid neutralising capacity (ANC) was detected in sufficient quantities to neutralise the potential acidity generated from two of the samples (BH01 3.5m and BH02 2m), it cannot be confirmed if this ANC would effectively neutralise the acidity generated under conditions likely to be encountered during construction works.

Based on the results there is PASS present within the area that would require liming to neutralise the acidity generated from the disturbance of PASS. Current data suggests liming between 3.5 and 26 kg CaCO3/t (based on Net Acidity excluding ANC values) would be required. An Acid Sulfate Soil Management Plan (ASSMP) will be required to direct the storage, handling and treatment of any excavated soil material.

5.8 Contamination

All results were reported below the health and ecological assessment criteria for commercial/industrial land use. Based on this soils present a low risk to human health and the environment under a commercial/industrial land use. During construction it is recommended that any soils that are excavated are stockpiled away from sensitive receptors such as waterways.

Soils were reported below the NSW EPA (2014) General Solid CT1 and would be classified as General Solid Waste – PASS. It is noted that this classification is preliminary only and further testing would need to be completed prior to disposal of soils off site. It is also noted that given that the soils contain PASS, treatment may need to be done prior to disposal.

6. References

ASSMAC (1998) NSW Acid Sulfate Soils Manual

Colquhoun G.P., Hughes K.S., Deyssing L., Ballard J.C., Folkes C.B, Phillips G., Troedson A.L. & Fitzherbert J.A. 2021. New South Wales Seamless Geology dataset, version 2.1 [Digital Dataset]. Geological Survey of New South Wales, Department of Regional NSW, Maitland via MinView

Matthei L.E., 1995, Soil Landscapes of the Newcastle 1:100,000 Sheet map and report, NSW Department of Land and Water Conservation, Sydney, via eSpade

Naylor, SD, Chapman, GA, Atkinson, G, Murphy CL, Tulau MJ, Flewin TC, Milford HB, Morand DT, 1998, Guidelines for the Use of Acid Sulfate Soil Risk Maps, 2nd ed., Department of Land and Water Conservation, Sydney via eSpade

NEPC (2013). National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999. National Environment Protection Council, as amended in May 2013

NSW EPA (2014). Waste Classification Guidelines, Part 1: Classifying Waste. November 2014

NSW EPA (2021). Guidelines for Consultants Reporting on Contaminated sites

Sullivan, L, Ward, N, Toppler, N and Lancaster, G 2018, National Acid Sulfate Soils guidance: National acid sulfate soils sampling and identification methods manual, Department of Agriculture and Water Resources, Canberra ACT. CC BY 4.0

Appendices

Appendix A

General Notes and Standard Sheets

GENERAL NOTES

The report contains the results of a geotechnical investigation or study conducted for a specific purpose and client. The results may not be used or relied on by other parties, or used for other purposes, as they may contain neither adequate nor appropriate information. In particular, the investigation does not cover contamination issues unless specifically required to do so by the client.

To the maximum extent permitted by law, all implied warranties and conditions in relation to the services provided by GHD and the report are excluded unless they are expressly stated to apply in the report.

TEST HOLE LOGGING

The information on the test hole logs (boreholes, test pits, exposures etc.) is based on a visual and tactile assessment, except at the discrete locations where test information is available (field and/or laboratory results). The test hole logs include both factual data and inferred information. Moreover, the location of test holes should be considered approximate, unless noted otherwise (refer report). Reference should also be made to the relevant standard sheets for the explanation of logging procedures (Soil and Rock Descriptions, Core Log Sheet Notes etc.).

GROUNDWATER

Unless otherwise indicated, the water depths presented on the test hole logs are the depths of free water or seepage in the test hole recorded at the given time of measuring. The actual groundwater depth may differ from this recorded depth depending on material permeabilities (i.e. depending on response time of the measuring instrument). Further, variations of this depth could occur with time due to such effects as seasonal, environmental and tidal fluctuations or construction activities such as a change is ground surface level. Confirmation of groundwater levels, phreatic surfaces or piezometric pressures can only be made by appropriate surveys, instrumentation techniques and monitoring programmes.

INTERPRETATION OF RESULTS

The discussion or recommendations contained within this report normally are based on a site evaluation from discrete test hole data, often with only approximate locations (e.g. GPS). Generalised, idealised or inferred subsurface conditions (including any geotechnical cross-sections) have been assumed or prepared by interpolation and/or extrapolation of these data. As such these conditions are an interpretation and must be considered as a guide only.

CHANGE IN CONDITIONS

Local variations or anomalies in ground conditions do occur in the natural environment, particularly between discrete test hole locations or available observation sites. Additionally, certain design or construction procedures may have been assumed in assessing the soil-structure interaction behaviour of the site. Furthermore, conditions may change at the site from those encountered at the time of the geotechnical investigation through construction activities and constantly changing natural processes.

Any change in design, in construction methods, or in ground conditions as noted during construction, from those assumed or reported should be referred to GHD for appropriate assessment and comment.

GEOTECHNICAL VERIFICATION

Verification of the geotechnical assumptions and/or model is an integral part of the design process - investigation, construction verification, and performance monitoring. Variability is a feature of the natural environment and, in many instances, verification of soil or rock quality, or foundation levels, is required. There may be a requirement to extend foundation depths, to modify a foundation system and/or to conduct monitoring as a result of this natural variability. Allowance for verification by appropriate geotechnical personnel must be recognised and programmed for construction.

FOUNDATIONS

Where referred to in the report, the soil or rock quality, or the recommended depth of any foundation (piles, caissons, footings etc.) is an engineering estimate. The estimate is influenced, and perhaps limited, by the fieldwork method and testing carried out in connection with the site investigation, and other pertinent information as has been made available. The material quality and/or foundation depth remains, however, an estimate and therefore liable to variation. Foundation drawings, designs and specifications should provide for variations in the final depth, depending upon the ground conditions at each point of support, and allow for geotechnical verification.

REPRODUCTION OF REPORTS

Where it is desired to reproduce the information contained in our geotechnical report, or other technical information, for the inclusion in contract documents or engineering specification of the subject development, such reproductions must include at least all of the relevant test hole and test data, together with the appropriate Standard Description sheets and remarks made in the written report of a factual or descriptive nature.

Reports are the subject of copyright and shall not be reproduced either totally or in part without the prior written consent of GHD. GHD expressly disclaims responsibility to any person other than the client arising from or in connection with this report.

GLOSSARY OF SYMBOLS

This standard sheet should be read in conjunction with all test hole log sheets and any idealised geological sections prepared for the investigation report.

GENERAL											
Symbol	Description					Syr	nbol	Descript	ion		
D		Disturbed Sample				R				meability Te	st
В	Bulk Sample					F				meability Te	
U(50)	Undisturbed Sar		l by sample	e size or	tube	PB		Plate Bea			
CS	Core Sample (su	uffixed by dian	neter in mm	1)		-		Water Inf	low (ma	ike)	
ES	Soil sample for e	environmental	sampling					Water Ou			
PID	Photoionisation	Detector				∇		Tempora	ry Wate	r Level	
SPT	Standard Penetr	ation Test (wit	h blows pe	r 0.15m)		V		Final Wat	ter Leve	:l	
N	SPT Value					•		Point Loa	d Test ((axial)	
HB/HW	SPT Hammer Bo	ouncing/Hamn	ner Weight			0		Point Loa	d Test ((diametric)	
PP/HP	Pocket/Hand Pe	_	_	alue kPa	1)	PL		Point Loa			
PK	Packer Test (kPa	a)	•			IMF		Impression			
PZ	Piezometer Insta					PM		Pressure			
SV/VS	Shear Vane Tes	t (suffixed by v	/alue in kPa	a)							
		,			SYMBOL	s					
Main Co	omponents				Compone						
	SAND	FILL			sandy	1110	* * * * * * * * * * * * * * * * * * *	vege	tation, r	oots	
000	GRAVEL [SILT		0000	gravelly			silty			
	CLAY	TOPS	OIL		clayey			latural soil ation of co		nerally a ts, e.g. sandy	CLAY
		- K-K-K-J		ROCK	SYMBOL	.s					u.z.z.z
Sedime	ntary							Igneous			
	SANDSTONE	SILTS	STONE		CONGLO	OMER	ATE	+ + + + + + + +	GRANI C ROC		IGNEOUS
	CLAYSTONE	SHAL	E		COAL				BASAL IC ROCK	T 🗐	DYKE
Note: Ad	dditional rock symbols	may be allocate	d for a parti	cular proje	ect						
			NATU	RAL DE	FECTS	(Cod	ing)				
Defect 7	Гуре	Orientatio	า								
Jt	Joint	For vertical	non-orient	ed core .	"Dip" an	ıgle (e	g. 5°) n	neasured	relative	to horizonta	al.
Pt	Parting	For inclined	l non-orien	ted core	"Angle"	meas	sured re	lative to	core axi	S.	
SS	Sheared Surface									45°/225° ma	ag.).
WSm	Weathered Seam	Orientatio			Roughn		·		Coatir		3 /
SSm	Sheared Seam	VT	Vertical		Pol	Polisl	ned		Cn	Clean	
CSm	Crushed Seam	HZ or 0°	Horizonta	I	So	Smoo	oth		Sn	Stained	
ISm	Infilled Seam	d/°	Degrees		Rf	Roug			Ve	Veneer	
SZ	Sheared Zone		J. 1 2 G		VR		Rough		Co	Coating	
VN	Vein				SIk		ensided			.3	
Shape								/laterials			
Pln	Planar	St	Stepped		CLAY	Clay			Mi	Micaceous	3
Cu	Curved	lr	Irregular		Ca	Calci	te		Mn	Manganes	
Un	Undulating	Dis	Discontin	uous	X		onaceo	us	Ру	Pyrite	
Others					Kt	Chlor			Qz	Quartz	
OP	Open CL	Closed	Ti Tig	ght	Fe	Iron (MU	Unidentifie	ed Mineral
	- [''	,		\					

LABORATORY TESTING

GENERAL

Samples extracted during the fieldwork stage of a site investigation may be "disturbed" or "undisturbed" (as generally indicated on the test hole logs) depending upon the nature and purpose of the sample as well as the method of extraction, transportation, extrusion and testing. This aspect should be taken into account when assessing test results, which must of necessity, reflect the effects of such disturbance.

All soil properties (as measured by laboratory testing) exhibit inherent variability and thus a certain statistical number of tests is required in order to predict an average property with any degree of confidence. The site variability of soil strata, future changes in moisture and other conditions and the discrete sampling positions must also be considered when assessing the representative nature of the laboratory programme.

Certain laboratory test results provide interpreted soil properties as derived by conventional mathematical procedures. The applicability of such properties to engineering design must be assessed with due regard to the site, sample condition, procedure and project in hand.

TESTING

Laboratory testing is normally carried out in accordance with Australian Standard AS 1289 as amended, or in NSW, Roads and Maritime Services (RMS) standards when specified. The routine Australian Standard tests are as follows:

Moisture Content	AS1289 2.1.1	
Liquid Limit	AS1289 3.1.1	
Plastic Limit	AS1289 3.2.1	collectively known as Atterberg Limits
Plasticity Index	AS1289 3.3.1	,
Linear Shrinkage	AS1289 3.4.1	
Particle Density	AS1289 3.5.1	
Particle Size Distribution	AS1289 3.6.1, 3.6.2 and 3.6.3	
Emerson Class Number	AS1289 3.8.1	
Percent Dispersion	AS1289 3.8.2	collectively, Dispersive Classification
Pinhole Dispersion Classification	AS1289 3.8.3	
Hole Erosion (HE)	GHD Method	
No Erosion Filter (NEF)	GHD Method	
Organic Matter	AS1289 4.1.1	
Sulphate Content	AS1289 4.2.1	
pH Value	AS1289 4.3.1	
Resistivity	AS1289 4.4.1	
Standard Compaction	AS1289 5.1.1	
Modified Compaction	AS1289 5.2.1	
Dry Density Ratio	AS1289 5.4.1	
Minimum Density	AS1289 5.5.1	
Density Index	AS1289 5.6.1	
California Bearing Ratio	AS1289 6.1.1 and 6.1.2	
Shear Box	AS1289 6.2.2	
Undrained Triaxial Shear	AS1289 6.4.1 and 6.4.2	
One Dimensional Consolidation	AS1289 6.6.1	
Permeability Testing	AS1289 6.7.1, 6.7.2 and 6.7.3	

Where tests are used which are not covered by appropriate standard procedures, details are given in the report.

LABORATORIES

Our Australian laboratories are NATA accredited to AS ISO / IEC17025 for the listed tests.

The oedometer, triaxial and shear box equipment are fully automated for continuous operation using computer controlled data acquisition, processing and plotting systems.

SOIL DESCRIPTION AND CLASSIFICATION

Soil is described in general accordance with <u>Australian Standard AS 1726-2017</u> (Geotechnical Site Investigations) in terms of visual and tactile properties, with potential refinement by laboratory testing. AS 1726 defines soil as particulate materials that occur in the ground and can be disaggregated or remoulded by hand in air or water without prior soaking. Classification of the soil is undertaken following description.

SOIL DESCRIPTION

The soil description includes a) Composition, b) Condition, c) Structure, d) Origin and e) Additional observations. 'FILL', 'TOPSOIL' or a 'MIXTURE OF SOIL AND COBBLES / BOULDERS' (with dominant fraction first) is denoted at the start of a soil description where applicable.

a) Soil Composition (soil name, colour, plasticity or particle characteristics, secondary and then minor components)

Soil Name: A soil is termed a *coarse grained soil* where the dry mass of sand and gravel particles exceeds <u>65%</u> of the total. Soils with more than <u>35%</u> fines (silt or clay particles) are termed *fine grained soils*. The soil name is made up of the primary soil component (in BLOCK letters), prefixed by applicable secondary component qualifiers. Minor components are applied as a qualifiers to the soil name (using the words 'with' or 'trace').

Particles are differentiated on the basis of size. 'Boulders' and 'cobbles' are outside the soil particle range, though their presence (and proportions) is noted. While individual particles may be designated as silt or clay based on grain size, fine grained soils are characterised as silt or clay based on tactile behaviour or Atterberg Limits, and not the relative composition of silt or clay sized particles.

Colour: The prominent colour is noted, followed by (spotted, mottled, streaked etc.) then secondary colours as applicable. Roughly equally proportioned colours are prefixed by (spotted, mottled, streaked etc.). Colour is described in its moist condition, though both wet and dry colours may also be provided if appropriate.

Plasticity: Fine grained soils are designated within standard ranges of plasticity based on tactile assessment or laboratory assessment of the Liquid Limit.

Particle Characteristics: The particle shape, particle distribution and particle size range within a coarse grained soil is described using standard terms. Particle composition may be described using rock or mineral names, with specific terms for carbonate soils.

Secondary and Minor Components: The primary soil is described and modified by secondary and minor components, with assessed ranges as tabulated.

Carbonate Soils: Carbonate content can be assessed by use of dilute '10%' HCl solution. Resulting clear sustained effervescence is interpreted as a *Carbonate soil* (approximately >50% carbonate), while weak or sporadic effervescence indicates *Calcareous soil* (< 50% carbonate). No effervescence is interpreted as a non-calcareous soil.

Organic and Peat Soils: Where identified, organic content is noted. *Organic soil* (2% to 25% organic matter) is usually identified by colour (usually dark grey/black) and odour (i.e. 'mouldy' or hydrogen sulphide odour). *Peat* (>25% organic matter) is identified by a spongy feel and fibrous texture. Peat soils' decomposition may be described as 'fibrous' (little / no decomposition), 'pseudo-fibrous' (moderate decomposition) or 'amorphous' (full decomposition).

Fraction	Components		Particle Size (mm)
Q	BOULDERS		> 200
Oversize	COBBLES		63 - 200
	GRAVEL	Coarse	19 - 63
		Medium	6.7 -19
Coarse grained		Fine	2.36 - 6.7
soil particles	SAND	Coarse	0.6 - 2.36
		Medium	0.21 - 0.6
		Fine	0.075 - 0.21
Fine grained soil particles	SILT		0.002 - 0.075
	CLAY		< 0.002

Plasticity Terms	Laboratory Liquid Limit Range	
Silt Clay		
N/A	N/A	(Non Plastic)
Law Diagnatian	Low Plasticity	≤ 35%
Low Plasticity	Medium Plasticity	> 35% and ≤ 50%
High Plasticity	High Plasticity	> 50%

Particle Distribution Terms (Coarse Grained Soils)			
Well graded	good representation of all particle sizes		
Poorly graded	one or more intermediate sizes poorly represented		
Gap graded	one or more intermediate sizes absent		
Uniform	essentially of one size		

Particle Shape Terms (Coarse Grained Soils)					
Rounded Sub-angular Flaky or Platy					
Sub-rounded Angular Elongated					

Secondary and Minor Components for Coarse Grained Soils					
Fines (%)	Modifier (as applicable)	Accessory coarse (%)	Modifier (as applicable)		
≤ 5	'trace silt / clay'	≤ 15	'trace sand / gravel'		
> 5, ≤ 12	'with clay / silt'	> 15, ≤ 30	'with sand / gravel'		
> 12	prefix 'silty / clayey'	> 30	prefix 'gravelly / sandy'		

Secondary and Minor Components for Fine Grained Soils			
% Coarse Modifier (as applicable)			
≤ 15	add "trace sand / gravel"		
> 15, ≤ 30	add "with sand / gravel"		
> 30	prefix soil "sandy / gravelly"		

SOIL DESCRIPTION AND **CLASSIFICATION**

b) Soil Condition (moisture, relative density or consistency)

Moisture: Fine grained soils are described relative to plastic or liquid limits, while coarse grained soils are assessed based on appearance and feel. The observation of seepage or free water is noted on the test hole logs.

Mois	Moisture - Coarse Grained Soils			
Term	Term Tactile Properties			
Dry	('D')	Non-cohesive, free running		
Moist ('M') Feels cool, darkened colour, tends to stick together				
Wet	('W')	Feels cool, darkened colour, tends to stick together, free water forms when handling		

Moisture - Fine Grained Soils				
Term		Tactile Properties		
Moist, dry of plastic limit	('w < PL')	Hard and friable or powdery		
Moist, near plastic limit	$(`w \approx PL')$	Can be moulded		
Moist, wet of plastic limit	('w > PL')	Weakened, free water forms on hands with handling		
Wet, near liquid limit	$(`w \approx LL')$	Highly weakened, tends to flow when tapped		
Wet, wet of liquid limit	('w > LL')	Liquid consistency, soil flows		

Relative Density (Non Cohesive Soils): The Density Index is inherently difficult to assess by visual or tactile means, and is normally assessed by penetration testing (e.g. SPT, DCP, PSP or CPT) with published correlations. Assessment may be affected by moisture and in situ stress conditions. Density Index assessment may be refined by combination of in situ density testing and laboratory reference maximum and minimum density ranges.

Consistency (Cohesive Soils): May be assessed by direct measurement (shear vane, CPT etc.), or approximate tactile correlations. Cohesive soils include fine grained soils, and coarse grained soils with sufficient fine grained components to induce cohesive behaviour. A 'design shear strength' must consider the mode of testing, the in situ moisture content and potential for variations of moisture which may affect the shear strength.

Relative Density (Non-Cohesive Soils)					
Term and (Symbol) Density Index (%)					
Very Loose	(VL)	≤ 15			
Loose	Loose (L)				
Medium Dense (MD)		> 35 and ≤ 65			
Dense	(D)	> 65 and ≤ 85			
Very Dense	> 85				
Consistency assessment can be influenced by					

moisture variation.

1 ≤ 85	
uenced by	

Consistency (Cohesive Soils)				
Term and (Symbol)		Tactile Properties	Undrained Shear Strength	
Very Soft	(VS)	Extrudes between fingers when squeezed	< 12 kPa	
Soft	(S)	Can be moulded by light finger pressure	12 - 25 kPa	
Firm	(F)	Can be moulded by strong finger pressure	25 - 50 kPa	
Stiff	Stiff (St) Cannot be moulded by fingers		50 - 100 kPa	
Very Stiff	(VSt)	Can be indented by thumb nail	100 - 200 kPa	
Hard	(H)	Can be indented with difficulty by thumb nail	> 200 kPa	
Friable	(Fr)	Easily crumbled or broken into small pieces by hand	-	

c) Structure (zoning, defects, cementing)

Zoning: The *in situ* zoning is described using the terms below. 'Intermixed' may be used for an irregular arrangement.

'layer' (a continuous zone across the exposed sample)

'pocket' (an irregular inclusion of different material).

'lens' (a discontinuous layer with lenticular shape)

'interbedded' or "interlaminated' (alternating soil types)

Defects: Described using terms below, with dimension orientation and spacing described where practical.

'parting' (an open or closed surface or crack sub parallel to layering with little / no tensile strength - open or closed)

'softened zone' (in clayey soils, usually adjacent to a defect with associated higher moisture content)

'fissure' (as per a parting, though not parallel or sub parallel to layering – may include desiccation cracks)

'tube' (tubular cavity, singly or one of a large number, often formed from root holes, animal burrows or tunnel erosion)

'sheared seam' (zone of sub parallel near planar closely spaced intersecting smooth or slickensided fissures dividing the mass into lenticular or wedge shaped blocks)

'tube cast' (an infilled tube - infill may vary from uncemented through to cemented or have rock properties)

'sheared surface' (a near planar, curved or undulating smooth, polished or slickensided surface, indicative of displacement)

'infilled seam' (sheet like soil body cutting through the soil mass, formed by infilling of open defects)

Cementation: Soils may be cemented by various substances (e.g. iron oxides and hydroxides, silica, calcium carbonate, gypsum), and the cementing agent shall be identified if practical. Cemented soils are described as:

'weakly cemented' easily disaggregated by hand in air or water

'moderately cemented' effort required to disaggregate the soil by hand in air or water

Materials extending beyond 'moderately cemented' are encompassed within the rock strength range. Where consistent cementation throughout a soil mass is identified as a duricrust, it is described in accordance with duricrust rock descriptors. Where alternate descriptors of cementation development are applied for consistency with regional practices or geology, or client requirements, these are outlined separately.

SOIL DESCRIPTION AND CLASSIFICATION

d) Origin

An interpretation is provided based on observations of landform, geology and fabric, and may further include assignment of a stratigraphic unit. The use of terms 'possibly' or 'probably' indicates a higher degree of uncertainty regarding the assessed origin or stratigraphic unit. Typical origin descriptors include:

Residual Formed directly from in situ weathering with no visible structure or fabric of the parent soil or rock.

Extremely weathered Formed directly from in situ weathering, with remnant and/or fabric from the parent rock.

Alluvial Deposited by streams and rivers (may be applied more generically as transported by water).

Estuarine Deposited in coastal estuaries, including sediments from inflowing rivers, streams, and tidal currents.

Marine Deposited in a marine environment.

Lacustrine Deposited in freshwater lakes.

Aeolian Transported by wind.

Colluvial and Soil and rock debris transported down slopes by gravity (with or without assistance of water). Colluvium is typically applied to thicker / localised deposits, and slopewash for thinner / widespread deposits.

TOPSOIL Surficial soil, typically with high levels of organic material. Topsoils buried by other transported soils are

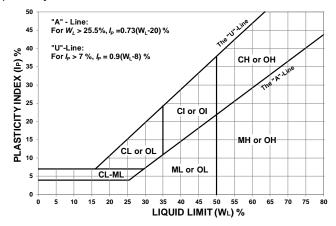
termed 'remnant topsoil'. Tree roots within otherwise unaltered soil does not characterise topsoil.

FILL Any material which has been placed by anthropogenic processes (i.e. human activity).

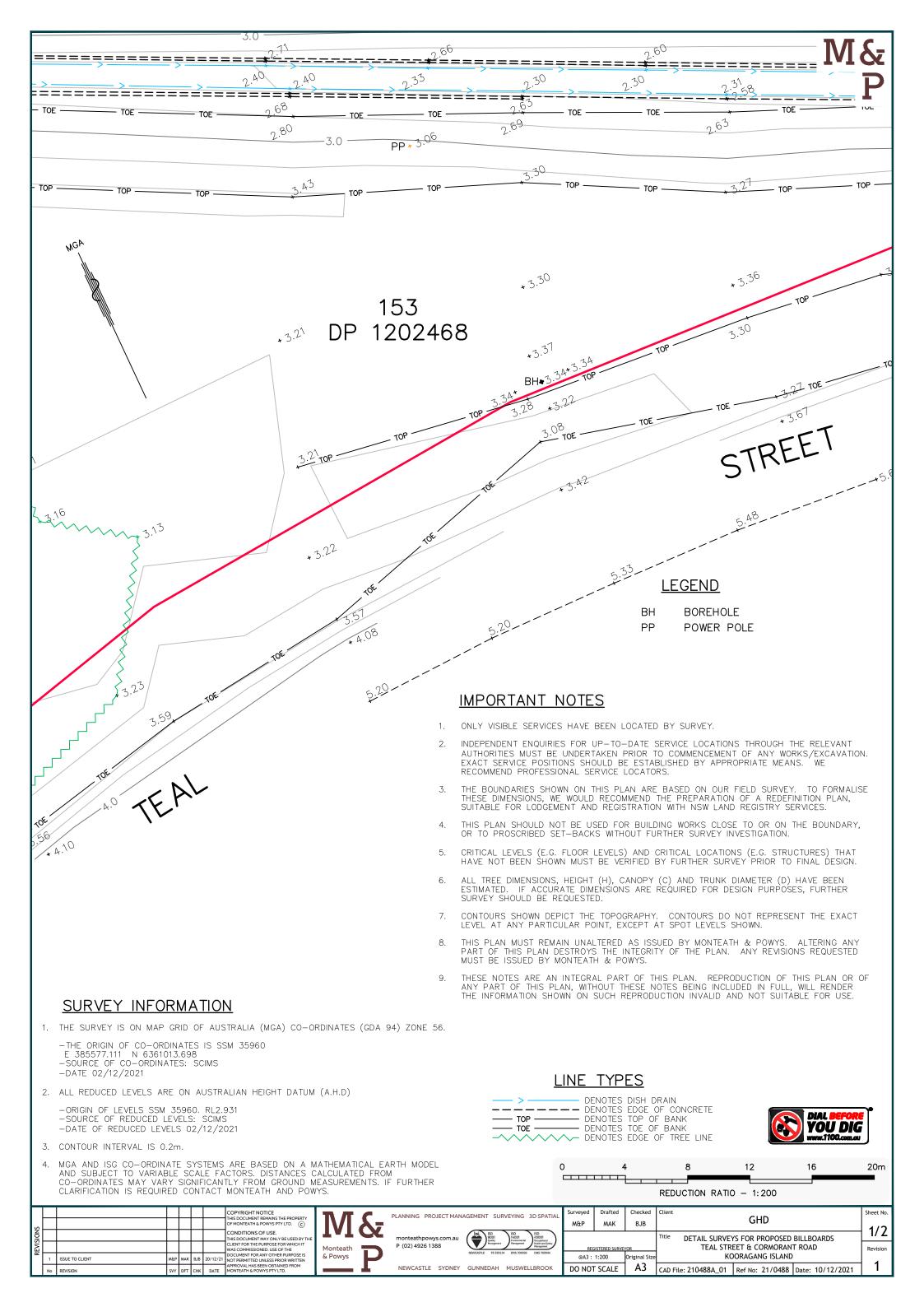
e) Additional Observations

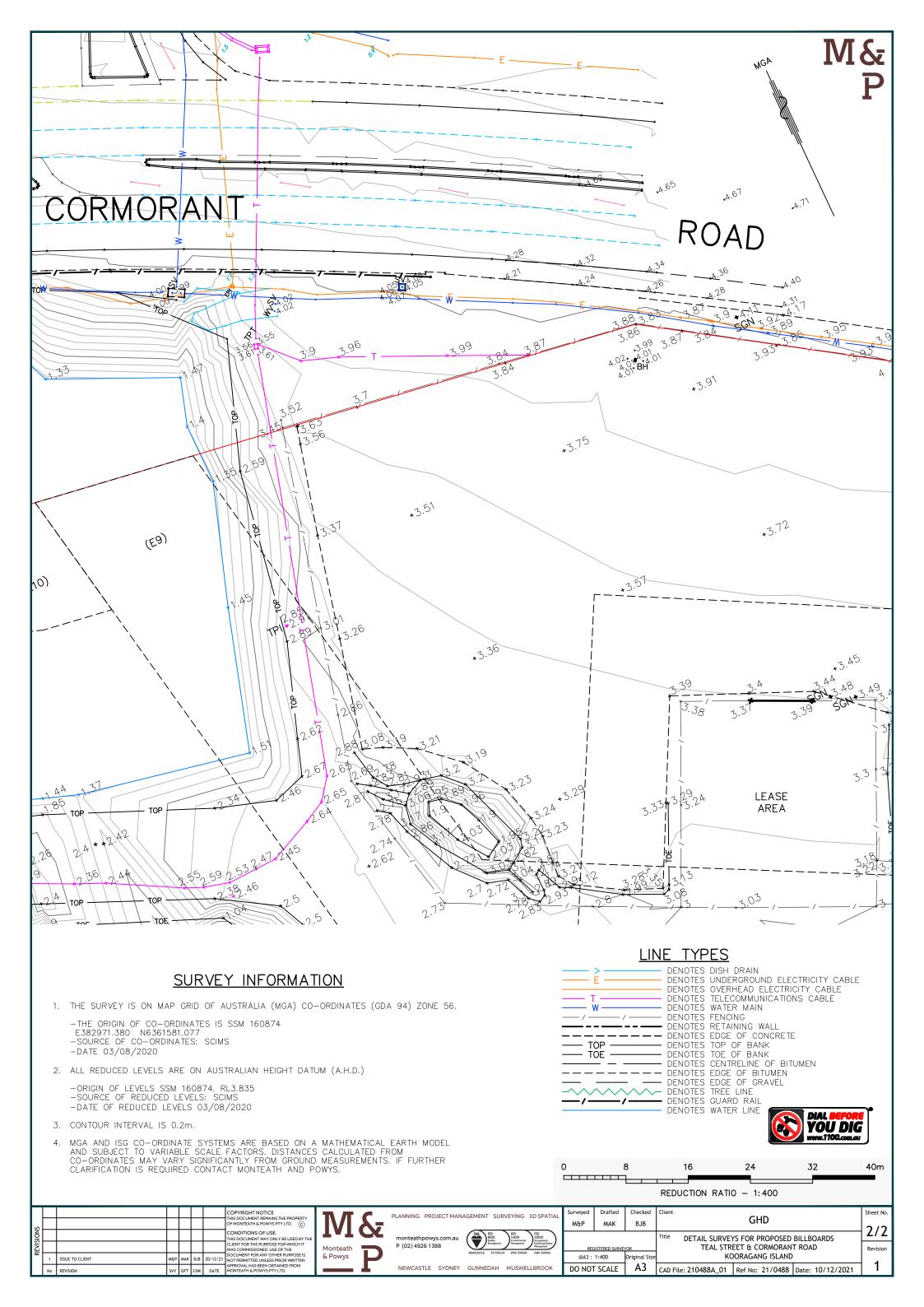
Additional observations may be included to supplement the soil description. Additional observations may consist of notations relating to soil characteristics (odour, contamination, colour changes with time), inferred geology (with delineation of soil horizons or geological time scale) or notes on sampling and testing application (including the reliability, recovery, representativeness, or condition of samples or test conditions and limitations). If the material is assessed to be not representative, terms such as 'poor recovery', 'non-intact', 'recovered as' or 'probably' are applied.

SOIL CLASSIFICATION


Classification allocates the material within distinct soil groups assigned a two character Group Symbol:

Coarse Grained Soils (sand and gravel: more than 65% of soil coarser than 0.075 mm)		Fine Grained Soils (silt and clay: more than 35% of soil finer than 0.075 mm)			
Major Division Group Symbol Soil Group		Major division	Group Symbol	Soil Group	
GRAVEL (more than half of the coarse fraction is > 2.36 mm)	GW	GRAVEL, well graded		ML	SILT, low plasticity
	GP	GRAVEL, poorly graded	SILT and CLAY (low to medium plasticity)	CL	CLAY, low plasticity
	GM	Silty GRAVEL		CI	CLAY, medium plasticity
	GC	Clayey GRAVEL		OL	Organic SILT
SAND (more than half of the coarse fraction is < 2.36 mm)	SW	SAND, well graded	0117 10141/	МН	SILT, high plasticity
	SP	SAND, poorly graded	SILT and CLAY (high plasticity)	СН	CLAY, high plasticity
	SM	Silty SAND	(3 1 1 1 1 1	ОН	Organic CLAY / SILT
	SC	Clayey SAND	Highly Organic	Pt	PEAT


Coarse grained soils with fines contents between 5% and 12% are provided a dual classification comprising the two group symbols separated by a dash, e.g. for a poorly graded gravel with between 5% and 12% silt fines (poorly graded 'GRAVEL with silt'), the classification is GP-GM.


For the purpose of classification, *poorly graded, uniform,* or *gap graded* soils are all designated as poorly graded. Soils that are dominated by boulders or cobbles are described separately and are not classified.

Classification is routinely undertaken based on tactile assessment with the soil description. Refinement of soil classification may be applied using laboratory assessment, including particle size distribution and Atterberg Limits. Atterberg Limits testing is applied to the sample portion finer than 0.425 mm. Fine grained soil components are assessed on the basis of regions defined within the Modified Casagrande Chart.

Appendix B Survey plans

Appendix C Borehole logs

Client: Ooh! Media Pty Limited **HOLE No. BH01** Project: Kooragang Island Billboard Geotechincal and Contamination Assessment SHEET 1 OF 2 TEMPLATE 2.00.GDT Location: Cormorant Road, Cormorant Road, Kooragang Island Position: Refer to test location plan Surface RL: 4.01m AHD Angle from Horiz.: 90° Processed: E.D Rig Type: HydroP Scout Mounting: Track Contractor: Total Drilling Pty Ltd Driller: T.M Checked: JMS Date Started: 16/12/2021 Date Completed: 16/12/2021 Logged by: E.D Date: 26/02/2022 ite: * indicates signatures on origii issue of log or last revision of log **DRILLING MATERIAL** GEO AS1726 2017 GINT PROJECT.GPJ GHD Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** Hole Support \ Casing Consistency / Density Index **JSC Symbol** [COBBLES/BOULDERS/FILL/TOPSOIL] then Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects ASPHALT 0.05 SP M Appears well [FILL] SAND: fine to coarse grained, brown, with clay, trace compacted fine gravel (fill) GEO 11/13/12 N=27 2 SPT 4/5/6 2.80 SP SAND: fine to coarse grained, grey, with trace clay and trace MD М shell (estuarine) 3 3 20 CLAY: high plasticity, black, with fine to coarse grained sand, trace shells (estuarine) СН F w = PL 4.00 4 SF SAND: fine to coarse grained, grey, with clay and shells M 1 (estuarine) SPT 2/2/7 N=7 5.50 SAND: fine to coarse grained, pale grey, trace clay SP М L (estuarine) SPT 4/4/2 N=6 6 Washbore + TC blade bit auger D SPI 15/17/20 N=3 SPT 11/19/30 **GHD** Job No. See standard sheets for

details of abbreviations & basis of descriptions

	lient :			Pty Limite				nd Contamination Assessment HOLE No.	В	H0	1
Project : Location					board Geotechincal and Contamination Assessment rmorant Road, Kooragang Island				SHEET 2 OF 2		
_	Position: Refer to test location p										
_	ig Type				ounting:	Track		Contractor: Total Drilling Pty Ltd Driller: T.M			Checked : JMS
D	ate Star	ted: 1	16/12/2	021		Dat	te Con	npleted: 16/12/2021 Logged by: E.D			Date: 26/02/2022
	DRILLING					MATERIAL					Note: * indicates signatures on origina issue of log or last revision of log
							Description			Comments/	
SCALE (m)	- Drilling Method	Hole Support	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Observations
- - - - - - - - - - - - - - - - - - -	—Washbore + TC blade bit auger —			N=40 SPT 25/100mm N=ref SPT 25/100mm	9.92			SAND: as previous	М	L	-
- 1(- 1(- 1)	2			N=ref	5.52			End of borehole at 9.92 metres. Target Depth			
- 12 12 15 	5										
S	ee stan	dard s	sheets	for		GHI) Tower 24 Honevsuckle Drive Newcastle 2300 Australia	J	ob N	lo.

details of abbreviations & basis of descriptions

Client: Ooh! Media Pty Limited **HOLE No. BH02** Project: Kooragang Island Billboard Geotechincal and Contamination Assessment SHEET 1 OF 2 TEMPLATE 2.00.GDT Location: Teal Street, Cormorant Road, Kooragang Island Position: Refer to test location plan Surface RL: 3.34m AHD Angle from Horiz.: 90° Processed: E.D Rig Type: HydroP Scout Mounting: Track Contractor: Total Drilling Pty Ltd Driller: T.M Checked: JMS Date Started: 16/12/2021 Date Completed: 16/12/2021 Logged by: E.D Date: 26/02/2022 ote: * indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** GEO AS1726 2017 GINT PROJECT.GPJ GHD Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then JSC Symbol Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects SC [FILL] Clayey SAND: fine to coarse grained, brown, with fine Μ gravel, trace shells and rootlet (fill) 0.40 SC [FILL] Clayey SAND: fine to coarse grained, brown, trace fine Μ gravel (fill) GEO 170 SPT SP SAND: fine to coarse grained, grey, with clay (estuarine) MD 1.80 М 11/ CH CLAY: high placity, black, with fine to medium grained sand w = PL 25 for 2 125mm HB N=ref 2.50 V-bit auger SF SAND: fine to coarse grained, grey with clay and trace shell М VL-(estuarine) SPT 0/0/0 SPT 2/2/2 MD SPT 4/8/6 6 Washbore + TC blade bit auger SPT 7/10/9 N=19 7.50 m: clay content increasing SPT 4/7/3 **GHD** Job No. See standard sheets for

See standard sheets for details of abbreviations & basis of descriptions

Client: Ooh! Media Pty Limited **HOLE No. BH02** Project: Kooragang Island Billboard Geotechincal and Contamination Assessment SHEET 2 OF 2 TEMPLATE 2.00.GDT Location: Teal Street, Cormorant Road, Kooragang Island Position: Refer to test location plan Surface RL: 3.34m AHD Angle from Horiz.: 90° Processed: E.D Rig Type: HydroP Scout Mounting: Track Contractor: Total Drilling Pty Ltd Driller: T.M Checked: JMS Date Started: 16/12/2021 Date Completed: 16/12/2021 Logged by: E.D Date: 26/02/2022 ote: * indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** GEO BOREHOLE AS1726 2017 GINT PROJECT.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** Hole Support \ Casing Consistency / Density Index **USC Symbol** [COBBLES/BOULDERS/FILL/TOPSOIL] then Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects SAND: as previous VL-L Μ Washbore + TC blade bit auger 8.50 SP SAND: fine to medium, grey, with clay, trace shells VD М (estuarine) 7/10/14 N=24 SP 9.82 End of borehole at 9.82 metres. for 130 10 Target Depth mm N=ref 12 13 15 Job No. **GHD** See standard sheets for

details of abbreviations & basis of descriptions

Appendix D

Geotechnical and contamination laboratory test results

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 286899

Client Details	
Client	GHD Pty Ltd
Attention	David Brooke
Address	57-63 Herbert Street, Artarmon, NSW, 2064

Sample Details					
Your Reference	<u>12552168</u>				
Number of Samples	2 Soil				
Date samples received	19/01/2022				
Date completed instructions received	19/01/2022				

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	27/01/2022					
Date of Issue	25/01/2022					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Diego Bigolin, Inorganics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 286899 Revision No: R00

Client Reference: 12552168

Misc Inorg - Soil								
Our Reference		286899-1	286899-2					
Your Reference	UNITS	BH01	BH02					
Depth		1.50-1.95	5.50-5.95					
Date Sampled		16/12/2021	16/12/2021					
Type of sample		Soil	Soil					
Date prepared	-	20/01/2022	20/01/2022					
Date analysed	-	20/01/2022	20/01/2022					
pH 1:5 soil:water	pH Units	8.9	7.5					
Electrical Conductivity 1:5 soil:water	μS/cm	70	330					
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10					
Sulphate, SO4 1:5 soil:water	mg/kg	<10	600					

Envirolab Reference: 286899 Revision No: R00

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

Envirolab Reference: 286899 Page | 3 of 7

Revision No: R00

QUALITY		Du	plicate		Spike Recovery					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			20/01/2022	[NT]		[NT]	[NT]	20/01/2022	
Date analysed	-			20/01/2022	[NT]		[NT]	[NT]	20/01/2022	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	101	
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	101	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	98	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	100	

Envirolab Reference: 286899 Revision No: R00

Page | 4 of 7

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 286899

Revision No: R00

Quality Control	ol Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 286899 Page | 6 of 7

Revision No:

R00

Report Comments

Samples were out of the recommended holding time for this analysis.

Envirolab Reference: 286899 Page | 7 of 7

Revision No: R00

Client:

Sydney Laboratory Unit 5/43 Herbert St Artarmon NSW 2064

email: artarmon@ghd.com.au web: www.ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax:(02) 9462 4710

Report No: SYD2200066

Issue No: 1

Material Test Report

Ooh! Media 76 Berry St

Nth Sydney NSW 2060

Project: 12552168

Accredited for compliance with ISO / IEC 17025 - Testing

NATA Accreditation Approved Signatory: D.P Brooke

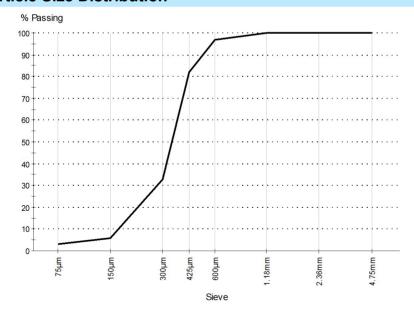
No: 679 Date of Issue: 1/02/2022

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

GHD Sample No SYD22-0016-01

Sampled By Sampled by GHD Geotechnical **Client Location** Kooragang Island Billboard


BH / TP No. Depth (m) 1.50 - 1.95 Soil Classification SAND (SP)

as per AS1726 tables 9 & 10

Other Test Results

Description	Method	Result	Limits
Curvature Coefficient	AS 1289.3.6.1	1.28	
Uniformity Coefficient		2.19	

Particle Size Distribution

AS 1289.3.6.1

Drying by: Oven

Date Tested: 24/01/2022

Note: Sample Wa	shed	
Sieve Size	% Passing	Limits
4.75mm	100	
2.36mm	100	
1.18mm	100	
600µm	97	
425µm	82	
300µm	33	
150µm	6	
75µm	3	

Comments

N/A

Sydney Laboratory Unit 5/43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: www.ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax:(02) 9462 4710

Material Test Report

Client: Ooh! Media

76 Berry St

Nth Sydney NSW 2060

Project: 12552168 Report No: SYD2200067

Issue No: 1

Accredited for compliance with ISO / IEC 17025 - Testing

NATA Accreditation Approved Signatory: D.P Brooke

No: 679 Date of Issue: 1/02/2022

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

GHD Sample No

SYD22-0016-02

Sampled By

Sampled by GHD Geotechnical

SAND pale grey

Client Location

Kooragang Island Billboard

BH / TP No. BH01 Depth (m) 4.00 - 4.45

Test Results			
Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)			
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.2	N/A	
Plastic Limit (%)	AS 1289.3.2.1	NP	
Plasticity Index (%)	AS 1289.3.3.1	NP	

Comments

NP = Non Plastic

Sydney Laboratory Unit 5/43 Herbert St Artarmon NSW 2064

email: artarmon@ghd.com.au web: www.ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax:(02) 9462 4710

Report No: SYD2200068

Issue No: 1

Client: Ooh! Media

76 Berry St

Material Test Report

Nth Sydney NSW 2060

Project: 12552168

Accredited for compliance with ISO / IEC 17025 - Testing

NATA Accreditation Approved Signatory: D.P Brooke

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

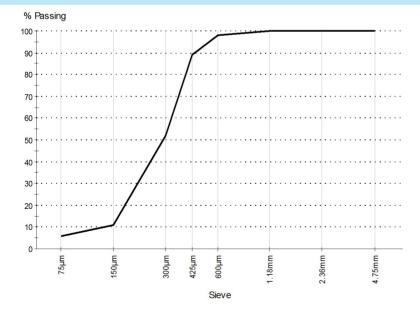
No: 679 Date of Issue: 1/02/2022

Sample Details

GHD Sample No SYD22-0016-03

Sampled By Sampled by GHD Geotechnical

SAND with silt


Client Location Kooragang Island Billboard

BH / TP No. **BH01** Depth (m) 6.50 - 6.95

Other Test Results

Description	Method	Result	Limits
Curvature Coefficient	AS 1289.3.6.1	1.01	
Uniformity Coefficient		2.48	

Particle Size Distribution

AS 1289.3.6.1

Drying by: Oven

Date Tested: 24/01/2022

Note: Sample Washed % Passing Limits Sieve Size 4.75mm 100 2.36mm 100 1.18mm 100 600µm 98 425µm 89 300µm 52 150µm 11 75µm 6

Comments

N/A

Sydney Laboratory Unit 5/43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: www.ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax:(02) 9462 4710

Report No: SYD2200069

Issue No: 1

Material Test Report

Client: Ooh! Media 76 Berry St

Nth Sydney NSW 2060

Project: 12552168

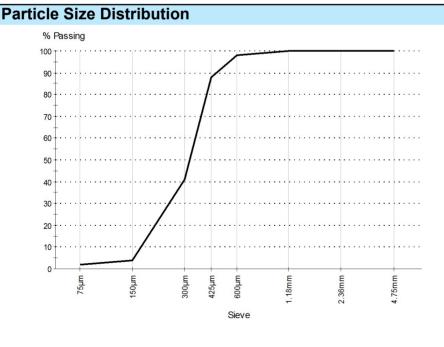
Accredited for compliance with ISO / IEC 17025 - Testing

NATA Accreditation Approved Signatory: D.P Brooke

No: 679 Date of Issue: 1/02/2022

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details


GHD Sample No SYD22-0016-04

Sampled By Sampled by GHD Geotechnical **Client Location** Kooragang Island Billboard

BH / TP No. Depth (m) 5.50 - 5.95 Soil Classification SAND (SP)

as per AS1726 tables 9 & 10

Other Test Results Description Method Result Limits **Curvature Coefficient** AS 1289.3.6.1 1.03 **Uniformity Coefficient** 2.06

AS 1289.3.6.1

Drying by: Oven

Date Tested: 24/01/2022

Note: Sample Was	shed	
Sieve Size	% Passing	Limits
4.75mm	100	
2.36mm	100	
1.18mm	100	
600µm	98	
425µm	88	
300µm	41	
150µm	4	
75µm	2	

Comments

N/A

Cerein GHO Project 12552168 Project large Mison Monking State Interruption Control of the Contro		CHAIN OF CUSTOD		Unit F3 Bld 02 9900 84	aboratory I.F 16 Mars Road Lane Cove West N 60 EnviroSampleNSW@eurofins.	ISW 2066 Unit	bane Laboratory 21 Smallwood Place Mura 02 4600		Perth Laboratory Unit 2 91 Leach Hig	hway Kewdale WA			6	Monterey	Laboratory Road Dandenong Soul		15
Central Name Al ison Monk leg 300 Provide Output Control Altison Work leg 300 Altiso	Compai					8	Project Manage	Alisan			_	r(s)	Sail	n	44.431		1
Revisit Directors Processor Processo	Addres	Floor 3 24 H	loney suchle	Project Name	Kooragang	Island bill General co	5 JD Format ESdat, EQuIS etc	1.1.50.1	7-10-1710101			rer by	mily	0	ennis		
Revisit Directors Processor Processo	Contact N	ame Alison Monk	1eu 2300	al" or "Filler E prìcing.							-	ivoice /	liso	n.	nonhle	y oghd	con
BHO! 0 - 0 - 2 m Gold Surphice Surphic	Phone N	0447 108 2	08	s specify "Tot tract SUITE								Containe	ers		Required Tur	rnaround Time (TAT)	
BHO! 0 - 0 - 2 m Gold Surphice Surphic	Special Dire	Alison will enter through requirements for what test.	mail e samples	Analyse: requested, please e must be used to a							Change co	ntamer type &	size if necess		Overnight (r	Surcharge will apply reporting by 9am)	
BHO 0 - 0 - 2m 6/12 5	Purchase C	Order		Where metals are SUITE cod						0mL Plastic	Oml. Plastic Sml. Plastic	L Amber Glass	L PFAS Bottle	ASA964, WA Gui	☐ 2 days♦ ☐ 5 days (Star	☐ 3 days◆	
2 8HO1 0.3 - 0.5 m	No	Client Sample ID	Date/Time	Solid (S)						20	25	200m	500m	3	Sampl		
2 8HO1 0.3 - 0.5 m	1 BH	010-0.2m	16/12 5											1 4	Just 1	Acrileu	مادي
BHO1 1.5 m	2 BH	01 0.3-0.5m	16 18										1	1	Jun /	riscia bu	pn
BHO 7. Sm	BH	01 0.9-1m												1			
5 BHO1 2 M 6 BHO1 2 Sm1 7 BHO1 3 M 8 BHO1 3 Sm 9 BHO1 4 M 9 BHO1 5	4 BH	01 1.5m											1				
6 BHO1 2.5m 7 BHO1 3 M 8 BHO1 3.5 M 9 BHO1 4 M 10 BHO1 5 M Total counts 6thod of Shipment	5 BH												_	-			
BHOL 3 M BHOL 3.5 M BHOL 4 M BHOL 5 M Total Counts Total Counts Total Counts Signature Date Time Temperature Total Counts Time Temperature Total Counts Signature Date Time Total Counts Time Temperature Total Counts Signature Date Time Temperature Total Counts Signature Date Time Temperature Time Temperature Total Counts Signature Date Time Total Counts Time Temperature Time Time																	
BHOLSM Total Counts Stehod of Shipment Courier (#) Hand Delivered Postal Name Signature Courier (#) Hand Delivered Postal Name Signature Date Time Temperature 17.9 SYD BNE MEL PER ADL NTL DRW Signature Date 22.12.2 Time 8.30.000 Report No. 85.75.5	BH												<u> </u>	1			
BHOL 4 M Total Counts Ethod of Shipment		101 3.5m													-		
Total Counts Stehod of Shipment Courier (#) Hand Delivered Postal Name Signature Date Time													/				
Total Counts Laboratory Use Only Received By SYD BNE MEL PER ADL NTL DRW Signature Date Time Temperature 17.9			1										1	1	-1	,	
Courier (#) Hand Delivered Postal Name Signature Date Time	12		Total Count	ts									/				
Laboratory Use Only Received By Received By Received By SYD BNE MEL PER ADL NTL DRW Signature Date Time Temperature 17.9 SYD BNE MEL PER ADL NTL DRW Signature Date 22- 2-2 Time 8.30 ar Report Ne 8.70 ft Colors Environment Testing Australia Park Media Park Received By	lethod of Ship	ment Courier (#) Hand	Delivered [Postal Name			Signature			Date		Х		Time		
Received By SYD BNE MEL PER ADD NTL DRW Signature Date 22- 2-2 Time 8 30 an Report No. 957 \$55	Laboratory U	Ise Only	610		(0	Date							17.9	
	ırafins Environm		ax	SYD BN			09	20	Date 22-	12-21	Time	8	30	an	Report №	85285	6

☐ Brisbane Laboratory

CHAIN OF CUSTODY DECORD

Sydney Laboratory

	CHAIN OF CUSTODY Eurofine Environment Testing ABN 50				e Cove West NSW 2066 SW@eurofins.com	Unit 1 2	ne Laboratory 1 Smallwood Place Muran 14600 EnviroSampleQL		Perth Laboratory Unit 2 91 Leach Highway Ker 08 9251 9600 EnviroSamp					6 Mon	nterey Roa	aboratory ad Dandenong South VIC 3175 EnviroSampleVic@eurofins.com
Company	GHD		Project №	1255	2168				Monhley		Sampler	(s)		03 03	704 3000	Envirosampievic@euronins.com
Address	Floor 3 24	loneusuclule is 1 Hz	Project Name				EDD Format ESdat, EQuIS etc				anded ov		41.			Marklaugal
Contact Name	Alison Mor	htey	otal" or "Filt TE pricing.							E	nail for Re	sults	<i>p</i> (1:	501	1 ./	Monhleyeghd
Phone №	64471082	280	es specify T. attract SUI								Change cor	Conta	iners			Required Turnaround Time (TAT) Default will be 5 days if not ticked.
Special Direction	s tl	(1)	Analys sted, pleas t be used to												(88)	Surcharge will apply Overnight (reporting by 9am)
Purchase Order			is are reque							U	0 0	988	in the	PE)	Guide!	☐ Same day♦ ☐ 1 day♦
Quote ID №			Where metal SUTTE							500mL Plastic	250mL Plastic 125mL Plastic	200mL Amber Glass	40mL VOA vial 500mL PFAS Bottle	Jar (Glass or HDPE)	84964	☐ 2 days♦ ☐ 3 days♦ ☐ 5 days (Standard) ☐ Other(
Nia:	Client Sample ID	Date/Time si	atrix Ilid (S) ter (W)							500	250	200mL	40m	Jar (G	ner (Asbesto	Sample Comments / Dangerous Goods Hazard Warning
BHO	16.5m	16/12 5												X	X	Sar/Acid surpha
BHI	11 7.5m	Ì												У	X	1
BH	101 8.5m													У		
BH	019.5m													Ý		V
BHC																lehasi -
BHo															/ J	Asbestos Asbestos
BHO															y.	Asbestos
BHO	112m														X I	Duestos
BH	013m														У .	Ascia surpnate
BH	101 1.5m	V														tscid surphate Acid surphate Asbestos
		Total Counts													*	15bestos
thod of Shipment	Courier (#) Hand [elivered	Postal	Name			Signature			Date					Time
aboratory Use C		M		NE MEL PER		Signature	60	0	Date		Time		Ni Vi			Temperature
ofine Emdresser T	Received By	an	SYD 8	NE MEL PER		Signature	deemed as acceptance of	K	Date 22-12-	21	Time	4	8.3	Oa	14	Report No. 852456

Brisbane Laboratory

Sydney Laboratory

CHAIN OF CUSTODY BECODE

13	CHAIN OF CUSTOD' Eurofins Environment Testing ABN 5	Y RECORD 50 005 085 521		Laboratory Bid.F 16 Mars Road Lane Cove West NSW 2066 8400 EnviroSampleNSW@eurofins.com		ory Place Muranie QLD 4172 roSampleQLD@eurofins.com	Perth Laboratory Unit 2 91 Leach Highway Kewdal 08 9251 9600 EnviroSampleW.	le WA 610:	5			6 Montere	y Road Dandenong South VIC 3175	15
Company	GHD		Project №	12552168			Mon Wey		Sampler(s)		03 8564 8	6000 EnviroSampleVic@eurofins.com	
Address	Į (C)	Project Name			Format EQuIS etc		Han	nded ove	er by				
	A 1	\	Fillered".					Ema	il for Inv	oice	Ali	Son	Mon Wey Oahd	con
Contact Nar	111201 1101	nicley	y Total" or SUITE prioi					Ema	ill for Res			1	Monkley@ghd	
Filolie M2		708	lyses ease specif of to attract.					C	hange con	Conta lainer typ	ainers be & size if n	ecessary.	Required Turnaround Time (TAT) Default will be 5 days if not licked	
Special Direct	ions	(/	Anal quested, plunst be use					П				[inter]	Surcharge will apply Overnight (reporting by 9am)	
Purchase Or	der		etals are re JITE code r					stic	stic stic	Glass	vial Bottle	HDPE)	Same day♦ ☐ 1 day♦ ☐ 2 days♦ ☐ 3 days♦	
Quote ID N	12		Where n					500mL Plastic	250mL Plastic 125mL Plastic	200mL Amber Glass	40mL VOA vial 500mL PFAS Bottle	Jar (Glass or HDPE)	5 days (Standard)	,
No	Client Sample ID		Matrix Solid (S) Water (W)					35	22 22	200m	40 500m	Jar (6	Same day ☐ 1 day ☐ 2 days ☐ 3 days ☐ 5 days (Slandard) ☐ Other(Sample Comments / Dangerous Goods Hazard Warnin	g
1 BHO	J2 0-0.2m	16/12.	5									YX	Jar/Acidsus	Ahal
2 BH	02 0.4-0.5n	n l	(YX		prode
	02 m											XX		
" BH	102 1.5m	}										8 4		
5 BY	102 2 m											YS	,	-
	102 3m											XX		
	102 4 m											XX		
The second second	102 5m													
· BL	102 6.5m											XX		
	102 7.5m	1	V										1/-	
		Total Cour	nts									XX		
Method of Shipm	nent Courier (#) Hand	d Delivered	Postal Name		Signature			Date				Time	
Laboratory Us	Received By	O th	SYD E	BNE MEL PER ADL NTL DRW	Signature	\sim 0	Date		Time		131		Temperature	7

SYD | BNE | MEL | PER | ADJUNTLY DRW

Signature

Date

Submission of samples to the laboratory will be deemed as accordance of Eurofins | Environment Testing Standard Terms and Conditions unless agreed otherwise. A copy is available on request

Report No

Eurofins Environment Testing Australia Pty Ltd

Received By

\$ ·	CHAIN OF CUSTODY Eurofins Environment Testing ABN 50			Laboratory id.F 16 Mars Road Lane Cove West NSW 20 4400 EnviroSampleNSW@eurofins.com	066 Unit 1 :	ane Laboratory 21 Smallwood Place Murarrie QLD 4172 2 4600 EnviroSampleQLD@eurofins.com	Perth Laboratory Unit 2 91 Leach Highway Kewda 08 9251 9600 EnviroSampleW			ı		[6 Mo	nterey R	Laboratory load Dandenong South VI EnviroSampleVic@eu		l'
Company	GHD		Project №	1255216		Project Manager Aliso	1 Monhley			oler(s)				004 0000	LIVIOGANDIOVICES	(Millacoviii	
Address	11	(/	Project Name			EDD Format ESdat, EQuIS etc)	Н	anded	over !	ру						
Contact Nan	Alison Mo	nhley	ial" or "Fillered" E pricing.						nail for		ce Its	Alis	son	1	anhleyl	ghd.	0
Phone №	# Alison Mo 04471082	.08	ss specify Tr						Change		ontain ner type		necessary	y	Required Turna Default will be 5	round Time (TAT) days if not ticked.	
Special Directi	ons ((1 (Analyse equested, please must be used to											delines)		+Surcharge will apply ortling by 9am)+	
Purchase Ord	ler		metals are i					astic	astic	astic	er Glass	A vial	r HDPE)	4, WA Gui	☐ 2 days◆	☐ 3 days◆	
Quote ID N			Where					500mL Plastic	250mL Plastic	125mL Plastic	200mL Amber Glass	40mL VOA vial	Jar (Glass or HDPE)	10s AS496	5 days (Standa Otheri	rd))
No	Client Sample ID	Sampled Date/Time dd/mm/yy hh:mm	Matrix Solid (S) Water (W)					45	2	42	2001	5002	Jar	Other (Asbestos AS4964, WA Guide	Sample C / Dangerous Good	Comments Is Hazard Warning	
BH	1028.5m												X		Jer 14	cial <11	ro
2 Bd	102 9.5m												X		Jar/A	CICI SU	Y
BH	60-0.2m												ŕ		Asbes	Lac	
BH	02 0,4-0.5	pri												X	Asbe	shoc	1
	12 02/m													X	Asbes		
BM	2 1.5m													×	Asbest		-
BH	02 2 m 102 4 m													У	Asbes		1
BH	102 4m													×	Asbest		
9	-														1120631	(0,5	
0																	-
		Total Co	ounts														
ethod of Shipm	ent Courier (#) 🗀 Ha	and Delivered	Postal Name		Signature			Dat	9					Time		
Laboratory Us	e Only	W/4	SYD i	ONE MEL PER ADL NTL DRV	V Signature	201	Date	vă.	Tim	e					Temperature		

QS3009_R10 Modified by: Dr. R Symons Approved by: G, Jackson Approved on: 8 August 2019

Eurofins Environment Testing Australia Pty Ltd

Submission of samples to the laboratory will be deemed as acceptance of Eurolins | Environment Testing Standard Torms and Conditions unless agreed otherwise. A copy is available on request.

Report No

Quinn Raw

From: Alison Monkley <Alison.Monkley@ghd.com>
Sent: Wednesday, 22 December 2021 8:37 AM

To: Vednesday, 22 December 2021 8:37 AM

Quinn Raw

Subject: RE: 125521G8 COC

Categories: COCs/Clients

EXTERNAL EMAIL*

Hi Quinn.

Please analyse the following samples for TRH, BTEX, PAH, heavy metals (standard 8), OCPs and PCBs

- BH01 0-0.2
- BH01 0.9-1
- BH013
- BH02 0-0.2
- BH02 1
- BH02 2

Please analyse the following for ASS field test

- BH01 0.9-1
- BH01 2.5
- BH01 3.5
- BH015
- BH01 6.5
- BH01 8.5
- BH02 1
- BH02 2
- BH02 4
- BH02 6.5
- BH02 8.5
- BH02 9.5

Alison Monkley

B.Eng (Env), B.Sc, ME (groundwater)
Business Group Leader – Contamination Assessment and Remediation

GHD

Proudly employee-owned | ghd.com

Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle, NSW, 2300, Australia D +61 2 4979 9990 M +61 447 108 208 E alison.monkley@ghd.com

→ The Power of Commitment

Connect

Please consider the environment before printing this

From: Quinn Raw < QuinnRaw@eurofins.com>
Sent: Tuesday, 21 December 2021 12:15 PM
To: Alison Monkley < Alison.Monkley@ghd.com>

Subject: RE: 125521G8 COC

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove We NATA # 1261 Site # 1254

Unit F3, Building F NATA # 1261 Site # 18217

Brisbane NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

Eurofins ARL Pty Ltd ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

Eurofins Environment Testing NZ Limited

NZBN: 9429046024954

35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

GHD Pty Ltd NEWCASTLE

Contact name:

Alison Monkley

Project name:

KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID: Turnaround time: 12552168 10 Day

Date/Time received

Dec 22, 2021 8:30 AM

Eurofins reference 852456

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt: 17.9 degrees

Celsius.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

BH01 1.5M Jar labelled "1.4-1.5". Logged as BH01 1.5M as no other sample mislabelled. Please advise if incorrect. | BH01 2M & BH01 3M ASS bag listed twice on COC. | BH01 1.5M (Jar and Bag) labelled "BH01 1.4-1.5M". Logged as per COC | Two extra samples received; BH01 0.3-0.5 DUP02 & BH02 0.4-0.5M DUP02. Logged on H0LD. Please advise if analysis required. | Alison; please double check all sample names and analyses are correct. Some samples listed twice on COC, once with multiple sample containers (usually jar and bag) and again with only one (usually Asbestos Bag). |

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Alison Monkley - alison.monkley@ghd.com.au.

Note: A copy of these results will also be delivered to the general GHD Pty Ltd NEWCASTLE email address.

Melbourne

ABN: 50 005 085 521

6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Eurofins Environment Testing Australia Pty Ltd

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

Received:

Priority:

Contact Name:

Due:

Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

GHD Pty Ltd NEWCASTLE

Address: 3/24 Honeysuckle Dve

Newcastle

NSW 2300

Project Name:

KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID: 12552168 Order No.: Report #:

852456

Phone: 02 4979 9999 02 4979 9988 Fax:

Eurofins Analytical Services Manager: Andrew Black

Dec 22, 2021 8:30 AM

Jan 7, 2022

Alison Monkley

10 Day

		Sa	mple Detail			HOLD	olychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	urofins Suite B9
Melb	ourne Laborate	ory - NATA # 12	61 Site # 125	4						
Sydı	ney Laboratory		Х	Х		Х	Х			
Bris	bane Laborator	y - NATA # 1261	Site # 2079	4				Х		
May	field Laboratory	/ - NATA # 1261	Site # 25079	1						
Pert	h Laboratory - I	NATA # 2377 Sit	te # 2370							
Exte	rnal Laboratory	<u> </u>								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH01 0-0.2M	Dec 16, 2021		Soil	N21-De52382		Х		Х	Х
2	BH01 0.9-1M	Dec 16, 2021		Soil	N21-De52383		Х	Х	Х	Х
3	BH01 2.5M	Dec 16, 2021		Soil	N21-De52384			Х		
4	BH01 3M	Dec 16, 2021		Soil	N21-De52385		Х		Х	Х
5	BH01 3.5M	N21-De52386			Х					
6	BH01 5M	Dec 16, 2021		Soil	N21-De52387			Х		
7	BH01 6.5M	Dec 16, 2021		Soil	N21-De52388			Х		
8	BH01 8.5M	Dec 16, 2021		Soil	N21-De52389			Х		
9	BH01 0-0.2M	Dec 16, 2021		Soil	N21-De52390	Х				

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Received:

Contact Name:

Priority:

Due:

Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

GHD Pty Ltd NEWCASTLE

3/24 Honeysuckle Dve

Newcastle

NSW 2300

Project Name:

KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID:

12552168

Order No.: Report #:

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

852456 02 4979 9999

Phone: 02 4979 9988 Fax:

ck

NZBN: 9429046024954

Dec 22, 2021 8:30 AM

Jan 7, 2022

Alison Monkley

10 Day

Eurofins Analytica	Services Mana	ıger : And	drew Blaci
--------------------	---------------	------------	------------

						HOLD	Pol	Aci	Mo	Ш	
		Sa	mple Detail),LD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9	
Mell	oourne Laborato	ory - NATA # 12	61 Site # 125	4							
Syd	ney Laboratory ·	- NATA # 1261	Site # 18217			Х	Х		Х	Х]
Bris	bane Laboratory	y - NATA # 126 ²	1 Site # 2079	4				Х			
May	field Laboratory	- NATA # 1261	Site # 25079								
Pert	h Laboratory - N	IATA # 2377 Si	te # 2370								
Exte	rnal Laboratory]
10	BH02 1M	Dec 16, 2021		Soil	N21-De52391		Х	Х	Х	Х	
11	BH02 2M	Dec 16, 2021		Soil	N21-De52392		Х	Х	Х	Х	
12	BH02 4M	Dec 16, 2021		Soil	N21-De52393			Х			
13	BH02 6.5M	Dec 16, 2021		Soil	N21-De52394			Х			
14	BH02 8.5M	Dec 16, 2021		Soil	N21-De52395			Х			
15	BH02 9.5M	Dec 16, 2021		Soil	N21-De52396			Х			
16	BH01 0.3-0.5M	Dec 16, 2021		Soil	N21-De52397	Х					
17	BH01 1.5M	Dec 16, 2021		Soil	N21-De52398	Х					
18	BH01 2M	Dec 16, 2021		Soil	N21-De52399	Х					
19	BH01 4M	Dec 16, 2021		Soil	N21-De52400	Х					
20	BH01 7.5M	Dec 16, 2021		Soil	N21-De52401	Х					

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Eurofins Environment Testing Australia Pty Ltd

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

Received:

Contact Name:

Priority:

Due:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

GHD Pty Ltd NEWCASTLE

Address: 3/24 Honeysuckle Dve

Newcastle

NSW 2300

Project Name:

KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID:

12552168

Order No.: Report #:

852456

Phone: 02 4979 9999 Fax:

02 4979 9988

Eurofins Analytical Services Manager: Andrew Black

Dec 22, 2021 8:30 AM

Jan 7, 2022

Alison Monkley

10 Day

		Sa	mple Detail			HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
	oourne Laborato			4						
	ney Laboratory					X	X		Х	Х
	bane Laboratory							Х		
	field Laboratory									
	h Laboratory - N		te # 2370							
	rnal Laboratory									
21	BH01 9.5M	Dec 16, 2021		Soil	N21-De52402	X				
22	BH01 0.3-0.5M	·		Soil	N21-De52403	X				
23	BH01 0.9-1M	Dec 16, 2021		Soil	N21-De52404	X				
24	BH01 1.5M	Dec 16, 2021		Soil	N21-De52405	X				
25	BH02 0-0.2M	Dec 16, 2021		Soil	N21-De52406		X		X	Х
26	BH02 0.4-0.5M	·		Soil	N21-De52407	X				
27	BH02 1.5M	Dec 16, 2021		Soil	N21-De52408	X				
28	BH02 3M	Dec 16, 2021		Soil	N21-De52409	X				
29	BH02 5M	Dec 16, 2021		Soil	N21-De52410	X				
30	BH02 7.5M	Dec 16, 2021		Soil	N21-De52411	X				\vdash
31	BH02 0-0.2M	Dec 16, 2021		Soil	N21-De52412	Х				

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Jan 7, 2022

Alison Monkley

10 Day

Dec 22, 2021 8:30 AM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

GHD Pty Ltd NEWCASTLE

3/24 Honeysuckle Dve Newcastle

NSW 2300

Project Name:

KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID:

12552168

Order No.: Report #:

852456 02 4979 9999

Phone: 02 4979 9988 Fax:

ck

Eurofins Analytical	Services	Manager :	Andrew	Blac
---------------------	----------	-----------	--------	------

		Sa	mple Detail			HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
Melb	ourne Laborato	ry - NATA # 12	61 Site # 125	4						
Sydn	ey Laboratory -	NATA # 1261 \$	Site # 18217			Χ	Х		Х	Х
Brisk	ane Laboratory	/ - NATA # 1261	Site # 20794	ļ				Χ		
Mayf	ield Laboratory	- NATA # 1261	Site # 25079							
Perth	Laboratory - N	IATA # 2377 Sit	e # 2370							
Exte	rnal Laboratory									
32	BH02 0.4-0.5M	Dec 16, 2021		Soil	N21-De52413	Χ				
33	BH02 1M	Dec 16, 2021		Soil	N21-De52414	Χ				
34	BH02 1.5M	Dec 16, 2021		Soil	N21-De52415	Χ				
35	BH02 2M	Dec 16, 2021		Soil	N21-De52416	Χ				
36	BH02 4M	Dec 16, 2021		Soil	N21-De52417	Χ				
37	BH01 0.3-0.5 DUP02	Dec 16, 2021		Soil	N21-De52418	Х				
38	BH02 0.4-0.5M DUP02	Dec 16, 2021		Soil	N21-De52419	Х				
Test	Counts					23	6	12	6	6

GHD Pty Ltd 3/24 Honeysuckle Dve Newcastle NSW 2300

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Alison Monkley

Report 852456-S

Project name KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID 12552168
Received Date Dec 22, 2021

Client Sample ID			G01BH01 0-0.2M	BH01 0 9-1M	BH01 2.5M	BH01 3M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-De52382	N21-De52383	N21-De52384	N21-De52385
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit	200 10, 2021	Dec 10, 2021	Dec 10, 2021	500 10, 2021
Total Recoverable Hydrocarbons - 1999 NEPM Fra		Offic				
TRH C6-C9	20	mg/kg	< 20	< 20	_	< 20
TRH C10-C14	20	mg/kg	< 40	< 20	_	< 20
TRH C15-C28	50	mg/kg	< 100	< 50	-	< 50
TRH C29-C36	50	mg/kg	180	< 50		59
TRH C10-C36 (Total)	50		180	< 50		59
BTEX		mg/kg	180	< 30	-	39
Benzene	0.1	mg/kg	< 0.1	< 0.1	_	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	_	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	_	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	_	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	_	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	_	< 0.3
4-Bromofluorobenzene (surr.)	1	%	98	100	_	75
Total Recoverable Hydrocarbons - 2013 NEPM Fra	-	70		100		10
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 100	< 50	-	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	< 20
Polycyclic Aromatic Hydrocarbons	'					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5

Client Sample ID	1	1	G01BH01 0-0.2M	BH01 0.9-1M	BH01 2.5M	BH01 3M
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins Sample No.			N21-De52382	N21-De52383	N21-De52384	N21-De52385
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	=	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	90	99	-	105
p-Terphenyl-d14 (surr.)	1	%	60	85	-	92
Organochlorine Pesticides		1				
Chlordanes - Total	0.1	mg/kg	< 1	< 0.1	-	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
a-HCH	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
b-HCH	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
d-HCH	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Endosulfan I	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Toxaphene	0.5	mg/kg	< 10	< 0.5	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1	< 0.1	=	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	< 0.1	=	< 0.1
Dibutylchlorendate (surr.)	1	%	61	93	=	101
Tetrachloro-m-xylene (surr.)	1	%	91	103	-	108
Polychlorinated Biphenyls		1				
Aroclor-1016	0.1	mg/kg	< 1	< 0.1	-	< 0.1
Aroclor-1221	0.1	mg/kg	< 1	< 0.1	-	< 0.1
Aroclor-1232	0.1	mg/kg	< 1	< 0.1	-	< 0.1
Aroclor-1242	0.1	mg/kg	< 1	< 0.1	-	< 0.1
Aroclor-1248	0.1	mg/kg	< 1	< 0.1	-	< 0.1
Aroclor-1254	0.1	mg/kg	< 1	< 0.1	-	< 0.1
Aroclor-1260	0.1	mg/kg	< 1	< 0.1	-	< 0.1
Total PCB*	0.1	mg/kg	< 1	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	61	93	-	101
Tetrachloro-m-xylene (surr.)	1	%	91	103	-	108
Total Recoverable Hydrocarbons - 2013 NEPM Frac	ctions	T			1	
TRH >C10-C16	50	mg/kg	< 100	< 50	-	< 50
TRH >C16-C34	100	mg/kg	< 200	< 100	-	< 100
TRH >C34-C40	100	mg/kg	< 200	< 100	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 200	< 100	-	< 100

Client Sample ID Sample Matrix			G01BH01 0-0.2M Soil	BH01 0.9-1M Soil	BH01 2.5M Soil	BH01 3M Soil
Eurofins Sample No.			N21-De52382	N21-De52383	N21-De52384	N21-De52385
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	6.0	< 2	-	2.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	< 0.4
Chromium	5	mg/kg	14	< 5	-	7.1
Copper	5	mg/kg	16	< 5	-	6.4
Lead	5	mg/kg	13	< 5	-	26
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Nickel	5	mg/kg	8.9	< 5	-	6.9
Zinc	5	mg/kg	58	12	-	170
0/ Mojeture	1	%	7.8	1.0		16
% Moisture Acid Sulfate Soils Field pH Test	1	%	1.0	1.8	-	16
pH-F (Field pH test)*	0.1	pH Units	-	8.6	9.0	-
pH-FOX (Field pH Peroxide test)*	0.1	pH Units		7.0	7.5	-
Reaction Ratings*S05	0	-	-	1.0	1.0	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH01 3.5M Soil N21-De52386 Dec 16, 2021	BH01 5M Soil N21-De52387 Dec 16, 2021	BH01 6.5M Soil N21-De52388 Dec 16, 2021	BH01 8.5M Soil N21-De52389 Dec 16, 2021
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	8.3	8.6	6.8	8.6
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	4.9	7.6	2.5	5.9
Reaction Ratings*S05	0	-	3.0	4.0	4.0	1.0

Client Sample ID			BH02 1M	BH02 2M	BH02 4M	BH02 6.5M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-De52391	N21-De52392	N21-De52393	N21-De52394
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	-	-
TRH C10-C14	20	mg/kg	< 20	< 20	-	-
TRH C15-C28	50	mg/kg	< 50	< 50	-	-
TRH C29-C36	50	mg/kg	< 50	< 50	=	-
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	-	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	-
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	-	-
4-Bromofluorobenzene (surr.)	1	%	51	98	-	-

Client Sample ID			BH02 1M	BH02 2M	BH02 4M	BH02 6.5M
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins Sample No.			N21-De52391	N21-De52392	N21-De52393	N21-De52394
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	-
TRH C6-C10	20	mg/kg	< 20	< 20	-	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	116	87	-	-
p-Terphenyl-d14 (surr.)	1	%	101	110	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	-
a-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
b-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
d-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin Endrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-
Methoxychlor Toxaphene	0.05	mg/kg mg/kg	< 0.05 < 0.5	< 0.05 < 0.5	-	<u>-</u>

Client Sample ID			BH02 1M	BH02 2M	BH02 4M	BH02 6.5M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-De52391	N21-De52392	N21-De52393	N21-De52394
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	_
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	_
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	_
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	108	109	-	-
Tetrachloro-m-xylene (surr.)	1	%	122	96	-	-
Polychlorinated Biphenyls	<u>'</u>					
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	-	-
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	108	109	-	-
Tetrachloro-m-xylene (surr.)	1	%	122	96	-	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•				
TRH >C10-C16	50	mg/kg	< 50	< 50	-	-
TRH >C16-C34	100	mg/kg	< 100	< 100	-	-
TRH >C34-C40	100	mg/kg	< 100	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	-	-
Heavy Metals	•					
Arsenic	2	mg/kg	< 2	3.2	-	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	-
Chromium	5	mg/kg	5.6	28	-	-
Copper	5	mg/kg	< 5	16	-	-
Lead	5	mg/kg	7.3	39	-	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	-
Nickel	5	mg/kg	< 5	23	-	-
Zinc	5	mg/kg	61	260	-	-
% Moisture	1	%	20	22	-	-
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	8.5	8.5	9.1	8.7
pH-FOX (Field pH Peroxide test)*	0.1	pH Units		5.5	2.3	8.6
Reaction Ratings*S05	0	-	4.0	4.0	4.0	4.0

Client Sample ID			BH02 8.5M	BH02 9.5M	BH02 0-0.2M
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			N21-De52395	N21-De52396	N21-De52406
•			1	1	
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM I		T			
TRH C6-C9	20	mg/kg	-	-	< 20
TRH C10-C14	20	mg/kg	-	-	< 20
TRH C15-C28	50	mg/kg	-	-	< 50
TRH C29-C36	50	mg/kg	-	-	< 50
TRH C10-C36 (Total)	50	mg/kg	-	-	< 50
BTEX	<u> </u>				
Benzene	0.1	mg/kg	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	< 0.1
Xylenes - Total*	0.3	mg/kg	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	93
Total Recoverable Hydrocarbons - 2013 NEPM I		Τ "			
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	< 50
TRH C6-C10	20	mg/kg	-	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	-	< 20
Polycyclic Aromatic Hydrocarbons				-	0.5
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2
Acceptable	0.5	mg/kg	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	< 0.5 < 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5
Benzo(a)pyrene Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg mg/kg		-	< 0.5
Benzo(g.h.i)perylene	0.5				< 0.5
Benzo(k)fluoranthene	0.5	mg/kg mg/kg		-	< 0.5
Chrysene	0.5	mg/kg	_	_	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	_	-	< 0.5
Fluoranthene	0.5	mg/kg	_	_	< 0.5
Fluorene	0.5	mg/kg	_	_	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	_	-	< 0.5
Naphthalene	0.5	mg/kg	_	-	< 0.5
Phenanthrene	0.5	mg/kg	_	_	< 0.5
Pyrene	0.5	mg/kg	_	_	< 0.5
Total PAH*	0.5	mg/kg	_	_	< 0.5
2-Fluorobiphenyl (surr.)	1	%	_	_	122
p-Terphenyl-d14 (surr.)	1	%	_	-	138
Organochlorine Pesticides	· · · · · · · · · · · · · · · · · · ·			1	1.55
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	_	-	< 0.05
4.4'-DDT	0.05	mg/kg	_	-	< 0.05
a-HCH	0.05	mg/kg	_	-	< 0.05
Aldrin	0.05	mg/kg	_	-	< 0.05
b-HCH	0.05	mg/kg	_	_	< 0.05

Client Sample ID			BH02 8.5M	BH02 9.5M	BH02 0-0.2M
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			N21-De52395	N21-De52396	N21-De52406
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit			
Organochlorine Pesticides					
d-HCH	0.05	mg/kg	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	=	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	=	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05
Methoxychlor	0.05	mg/kg	-	-	< 0.05
Toxaphene	0.5	mg/kg	-	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	143
Tetrachloro-m-xylene (surr.)	1	%	-	-	122
Polychlorinated Biphenyls	!				
Aroclor-1016	0.1	mg/kg	_	_	< 0.1
Aroclor-1221	0.1	mg/kg	_	_	< 0.1
Aroclor-1232	0.1	mg/kg	_	-	< 0.1
Aroclor-1242	0.1	mg/kg	_	_	< 0.1
Aroclor-1248	0.1	mg/kg	_	_	< 0.1
Aroclor-1254	0.1	mg/kg	_	_	< 0.1
Aroclor-1260	0.1	mg/kg	_	_	< 0.1
Total PCB*	0.1	mg/kg	_	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	143
Tetrachloro-m-xylene (surr.)	1	%	_	-	122
Total Recoverable Hydrocarbons - 2013 NEPM Fr		/0		<u> </u>	122
-		ma/ka			1.50
TRH >C10-C16	50	mg/kg	-	-	< 50
TRH > C16-C34	100	mg/kg	-	-	< 100
TRH > C10 C40 (total)*	100	mg/kg	-	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	-	< 100
Heavy Metals		ma as /1	 		
Arsenic	2	mg/kg	-	-	< 2
Cadmium	0.4	mg/kg	-	-	< 0.4
Chromium	5	mg/kg	-	-	< 5
Copper	5	mg/kg	-	-	< 5
Lead	5	mg/kg	-	-	< 5
Mercury	0.1	mg/kg	-	-	< 0.1
Nickel	5	mg/kg	-	-	< 5
Zinc	5	mg/kg	-	-	25

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Acid Sulfate Soils Field pH Test	LOR	Unit	BH02 8.5M Soil N21-De52395 Dec 16, 2021	BH02 9.5M Soil N21-De52396 Dec 16, 2021	BH02 0-0.2M Soil N21-De52406 Dec 16, 2021
pH-F (Field pH test)*	0.1	pH Units	9.2	8.8	-
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	7.1	7.2	-
Reaction Ratings*S05	0	-	3.0	1.0	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jan 11, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jan 11, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 11, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Jan 11, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Jan 11, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 11, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Sydney	Jan 11, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Polychlorinated Biphenyls	Sydney	Jan 11, 2022	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Acid Sulfate Soils Field pH Test	Brisbane	Jan 07, 2022	7 Days
- Method: LTM-GEN-7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests			
% Moisture	Sydney	Dec 23, 2021	14 Days

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

NZBN: 9429046024954 Auckland 35 O'Rorke Road

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

GHD Pty Ltd NEWCASTLE

Address: 3/24 Honeysuckle Dve

Newcastle

NSW 2300

Project Name:

KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID:

12552168

Order No.: Report #:

852456

Phone: 02 4979 9999 Fax:

02 4979 9988

Eurofins Analytical Services Manager: Andrew Black

10 Day

Dec 22, 2021 8:30 AM

Jan 7, 2022

Alison Monkley

		Sa	mple Detail			HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
Melk	ourne Laborat	ory - NATA # 12	61 Site # 125	4						
Syd	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х		Х	Х
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	4				Х		
May	field Laboratory	y - NATA # 1261	Site # 25079	1						
Pert	h Laboratory - I	NATA # 2377 Sit	te # 2370							
Exte	rnal Laboratory	/								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH01 0-0.2M	Dec 16, 2021		Soil	N21-De52382		Х		Х	Х
2	BH01 0.9-1M	Dec 16, 2021		Soil	N21-De52383		Х	Х	Х	Х
3	BH01 2.5M	Dec 16, 2021		Soil	N21-De52384			Х		
4	BH01 3M	Dec 16, 2021		Soil	N21-De52385		Х		Х	Х
5	BH01 3.5M	Dec 16, 2021		Soil	N21-De52386			Х		
6	BH01 5M	Dec 16, 2021		Soil	N21-De52387			Х		
7	BH01 6.5M	Dec 16, 2021		Soil	N21-De52388			Х		Ш
8	BH01 8.5M	Dec 16, 2021		Soil	N21-De52389			Х		
9	BH01 0-0.2M	Dec 16, 2021		Soil	N21-De52390	Х				

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Project Name:

GHD Pty Ltd NEWCASTLE

Address: 3/24 Honeysuckle Dve

Newcastle

NSW 2300

KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID: 12552168 Order No.: Report #:

Phone:

Fax:

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

852456 02 4979 9999

02 4979 9988

Received: Dec 22, 2021 8:30 AM

Due: Jan 7, 2022 **Priority:** 10 Day **Contact Name:** Alison Monkley

Eurofins Analytical Services Manager: Andrew Black

			mple Detail			HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
	ourne Laborato	-		4						
	ney Laboratory					X	X	.,	Х	Х
	bane Laboratory							Х		
	field Laboratory									
	h Laboratory - N ernal Laboratory		e # 2370							
10	BH02 1M	Dec 16, 2021		Soil	N21-De52391		X	Х	Х	X
11	BH02 2M	Dec 16, 2021		Soil	N21-De52391		X	X	X	X
12	BH02 4M	Dec 16, 2021		Soil	N21-De52393		<u> </u>	X		
13	BH02 6.5M	Dec 16, 2021		Soil	N21-De52394			X		
14	BH02 8.5M	Dec 16, 2021		Soil	N21-De52395			X		
15	BH02 9.5M	Dec 16, 2021		Soil	N21-De52396			X		
16	BH01 0.3-0.5M	·		Soil	N21-De52397	Х				
17	BH01 1.5M	Dec 16, 2021		Soil	N21-De52398	Х				
18	BH01 2M	Dec 16, 2021		Soil	N21-De52399	Х				
19	BH01 4M	Dec 16, 2021		Soil	N21-De52400	Х				
20	BH01 7.5M	Dec 16, 2021		Soil	N21-De52401	Х				

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

Fax:

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

GHD Pty Ltd NEWCASTLE

3/24 Honeysuckle Dve

Newcastle NSW 2300

KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project Name: Project ID:

Address:

12552168

Order No.:

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Report #: 852456 Phone: 02 4979 9999 02 4979 9988 Received: Dec 22, 2021 8:30 AM

Due: Jan 7, 2022 **Priority:** 10 Day **Contact Name:** Alison Monkley

Eurofins Analytical Services Manager: Andrew Black

NZBN: 9429046024954

Auckland

			mple Detail			HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
Melk	oourne Laborato	ory - NATA # 12	61 Site # 125	4						
	ney Laboratory					Х	Х		Х	X
Bris	bane Laboratory	y - NATA # 1261	Site # 2079	4				Х		
May	field Laboratory	- NATA # 1261	Site # 25079	1						
-	h Laboratory - N		e # 2370							
Exte	rnal Laboratory									
21	BH01 9.5M	Dec 16, 2021		Soil	N21-De52402	Х				
22	BH01 0.3-0.5M	Dec 16, 2021		Soil	N21-De52403	Х				
23	BH01 0.9-1M	Dec 16, 2021		Soil	N21-De52404	X				
24	BH01 1.5M	Dec 16, 2021		Soil	N21-De52405	Х				
25	BH02 0-0.2M	Dec 16, 2021		Soil	N21-De52406		Х		Х	Х
26	BH02 0.4-0.5M	Dec 16, 2021		Soil	N21-De52407	Х				
27	BH02 1.5M	Dec 16, 2021		Soil	N21-De52408	Х				
28	BH02 3M	Dec 16, 2021		Soil	N21-De52409	Х				
29	BH02 5M	Dec 16, 2021		Soil	N21-De52410	Х				
30	BH02 7.5M	Dec 16, 2021		Soil	N21-De52411	Х				
31	BH02 0-0.2M	Dec 16, 2021		Soil	N21-De52412	Х				

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

NZBN: 9429046024954 35 O'Rorke Road

Jan 7, 2022

Alison Monkley

10 Day

Dec 22, 2021 8:30 AM

Auckland

IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Penrose, Auckland 1061 Phone: +64 9 526 45 51

Company Name:

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

GHD Pty Ltd NEWCASTLE

3/24 Honeysuckle Dve

Newcastle

NSW 2300

Project Name:

KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID:

12552168

Order No.: Report #:

852456

Phone: 02 4979 9999 02 4979 9988 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9
Melk	ourne Laborato	ory - NATA # 12	61 Site # 125	4						
Sydi	ney Laboratory	- NATA # 1261 :	Site # 18217			Х	Х		Х	Х
Bris	bane Laboratory	y - NATA # 1261	Site # 2079	4				Х		
May	field Laboratory	- NATA # 1261	Site # 25079)						
Pert	h Laboratory - N	IATA # 2377 Sit	e # 2370							
Exte	rnal Laboratory									
32	BH02 0.4-0.5M	Dec 16, 2021		Soil	N21-De52413	Х				
33	BH02 1M	Dec 16, 2021		Soil	N21-De52414	Х				
34	BH02 1.5M	Dec 16, 2021		Soil	N21-De52415	Х				
35	BH02 2M	Dec 16, 2021		Soil	N21-De52416	Х				
36	BH02 4M	Dec 16, 2021		Soil	N21-De52417	Х				
37	BH01 0.3-0.5 DUP02	Dec 16, 2021		Soil	N21-De52418	х				
38	BH02 0.4-0.5M DUP02	Dec 16, 2021		Soil	N21-De52419	х				
Test	Counts					23	6	12	6	6

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.4

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ections				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank	1 0 0				
втех					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank				•	
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ections				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank	1 0 0				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	1 0 0				
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-HCH	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank	, ,			•	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank	פייים ו				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank				1 3.22	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	IIIg/kg			1 033	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				Π	
TRH C6-C9	%	89	70-130	Pass	
TRH C10-C14	%	115	70-130	Pass	
LCS - % Recovery	/0	110	70-130	1 033	
BTEX				Π	
Benzene	%	87	70-130	Pass	
Toluene	%	85	70-130	Pass	
	%	82	70-130		
Ethylbenzene St. Vulence				Pass	
m&p-Xylenes	%	85	70-130	Pass	
o-Xylene	%	84	70-130	Pass	
Xylenes - Total*	%	85	70-130	Pass	
LCS - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions				T T	
	%	125	70-130	Pass	
Naphthalene					
TRH C6-C10	%	88	70-130	Pass	
LCS - % Recovery				1	
Polycyclic Aromatic Hydrocarbons Acenaphthene	%	87	70-130	Pass	
Acenaphthylana				1	
Acenaphthylene	%	90	70-130	Pass	
Anthracene	%	97	70-130	Pass	
Benz(a)anthracene	%	82	70-130	Pass	
Benzo(a)pyrene	%	87	70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene	%	82	70-130	Pass	
Benzo(g.h.i)perylene	%	82	70-130	Pass	
Benzo(k)fluoranthene	%	102	70-130	Pass	
Chrysene	%	86	70-130	Pass	
Dibenz(a.h)anthracene	%	88	70-130	Pass	
Fluoranthene	%	88	70-130	Pass	
Fluorene	%	92	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	90	70-130	Pass	
Naphthalene	%	88	70-130	Pass	
Phenanthrene	%	83	70-130	Pass	
Pyrene	%	89	70-130	Pass	
LCS - % Recovery	,,,		10 100	1 400	
Organochlorine Pesticides					
Chlordanes - Total	%	73	70-130	Pass	
4.4'-DDD	%	70	70-130	Pass	
4.4'-DDE	%	70	70-130	Pass	
4.4'-DDT	%	80	70-130	Pass	
a-HCH	%	72		Pass	
	%		70-130		
Aldrin		75	70-130	Pass	
b-HCH	%	76	70-130	Pass	
d-HCH	%	82	70-130	Pass	
Dieldrin	%	77	70-130	Pass	
Endosulfan I	%	79	70-130	Pass	
Endosulfan II	%	82	70-130	Pass	
Endosulfan sulphate	%	89	70-130	Pass	
Endrin	%	93	70-130	Pass	
Endrin aldehyde	%	77	70-130	Pass	
Endrin ketone	%	85	70-130	Pass	
g-HCH (Lindane)	%	80	70-130	Pass	
Heptachlor	%	72	70-130	Pass	
Heptachlor epoxide	%	75	70-130	Pass	
Hexachlorobenzene	%	76	70-130	Pass	
Methoxychlor	%	77	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls					
Aroclor-1016	%	76	70-130	Pass	
Aroclor-1260	%	96	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	%	110	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic	%	101	80-120	Pass	
Cadmium	%	103	80-120	Pass	
Chromium	%	113	80-120	Pass	
Copper	%	118	80-120	Pass	
Lead	%	100	80-120	Pass	
Mercury	%	103	80-120	Pass	
Nickel	%	120	80-120	Pass	
	%	113	80-120	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				,				
Total Recoverable Hydrocarb		ions		Result 1				
TRH C6-C9	S22-Ja04649	NCP	%	86		70-130	Pass	
TRH C10-C14	S21-De59667	NCP	%	118		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S22-Ja04649	NCP	%	88		70-130	Pass	
Toluene	S22-Ja04649	NCP	%	93		70-130	Pass	
Ethylbenzene	S22-Ja04649	NCP	%	96		70-130	Pass	
m&p-Xylenes	S22-Ja04649	NCP	%	97		70-130	Pass	
o-Xylene	S22-Ja04649	NCP	%	98		70-130	Pass	
Xylenes - Total*	S22-Ja04649	NCP	%	97		70-130	Pass	
Spike - % Recovery				•				
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions		Result 1				
Naphthalene	S22-Ja04649	NCP	%	103		70-130	Pass	
TRH C6-C10	S22-Ja04649	NCP	%	85		70-130	Pass	
Spike - % Recovery	022 040 10 10		,,,	- 55		10.00		
Polycyclic Aromatic Hydroca	rhons			Result 1				
Acenaphthene	S21-De56860	NCP	%	99		70-130	Pass	
Acenaphthylene	S21-De56860	NCP	%	113		70-130	Pass	
Anthracene	S21-De56860	NCP	%	104		70-130	Pass	
Benz(a)anthracene	S21-De30000	NCP	%	75		70-130	Pass	
Benzo(a)pyrene	S21-De47732	NCP	%	98		70-130	Pass	
Benzo(b&j)fluoranthene	S21-De56860	NCP	%	94		70-130	Pass	
Benzo(g.h.i)perylene	S21-De56860	NCP	%	100		70-130	Pass	
Benzo(k)fluoranthene	S21-De56860	NCP	%	111		70-130	Pass	
		NCP	%	75		70-130	Pass	
Chrysene Dibenz(a b)enthrocene	S21-De56860	NCP	%	103			Pass	
Dibenz(a.h)anthracene	S21-De56860					70-130		
Fluoranthene	S21-De56860	NCP	%	98		70-130	Pass	
Fluorene	S21-De56860	NCP	%	106		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-De56860	NCP	%	106		70-130	Pass	
Naphthalene	S21-De56860	NCP	%	101		70-130	Pass	
Phenanthrene	S21-De56860	NCP	%	94		70-130	Pass	
Pyrene	S21-De56860	NCP	%	98		70-130	Pass	
Spike - % Recovery				l	1			
Organochlorine Pesticides		1		Result 1				
Chlordanes - Total	S21-De49180	NCP	%	81		70-130	Pass	
4.4'-DDD	S21-De49180	NCP	%	79		70-130	Pass	
4.4'-DDE	S21-De49180	NCP	%	86		70-130	Pass	
4.4'-DDT	S21-De49180	NCP	%	73		70-130	Pass	
a-HCH	S21-De49180	NCP	%	76		70-130	Pass	
Aldrin	S21-De49180	NCP	%	81		70-130	Pass	
b-HCH	S21-De49180	NCP	%	80		70-130	Pass	
d-HCH	S21-De49180	NCP	%	77		70-130	Pass	
Dieldrin	S21-De49180	NCP	%	83		70-130	Pass	
Endosulfan I	S21-De49180	NCP	%	80		70-130	Pass	
Endosulfan II	S21-De49180	NCP	%	73		70-130	Pass	
Endosulfan sulphate	S21-De49180	NCP	%	82		70-130	Pass	
Endrin	S21-De49180	NCP	%	79		70-130	Pass	
Endrin aldehyde	S21-De49180	NCP	%	75		70-130	Pass	
Endrin ketone	S21-De49180	NCP	%	82		70-130	Pass	
g-HCH (Lindane)	S21-De49180	NCP	%	81		70-130	Pass	
Heptachlor	S21-De49180	NCP	%	82		70-130	Pass	
Heptachlor epoxide	S21-De49180	NCP	%	80		70-130	Pass	

		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Hexachlorobenzene	S21-De49180	NCP	%	80			70-130	Pass	
Methoxychlor	S21-De49180	NCP	%	78			70-130	Pass	
Spike - % Recovery					,		_		
Polychlorinated Biphenyls				Result 1					
Aroclor-1016	S21-De49180	NCP	%	74			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1					
TRH >C10-C16	S21-De59667	NCP	%	120			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S21-De58108	NCP	%	79			75-125	Pass	
Cadmium	S21-De58108	NCP	%	86			75-125	Pass	
Chromium	S21-De58108	NCP	%	92			75-125	Pass	
Copper	S21-De58108	NCP	%	93			75-125	Pass	
Lead	S21-De58108	NCP	%	96			75-125	Pass	
Mercury	S21-De58108	NCP	%	91			75-125	Pass	
Nickel	S21-De58108	NCP	%	93			75-125	Pass	
Zinc	S21-De58108	NCP	%	93			75-125	Pass	
Spike - % Recovery	021 000100	1401	70	1 33			70-120	1 433	
Polychlorinated Biphenyls				Result 1					
Aroclor-1260	S22-Ja05141	NCP	%	89			70-130	Pass	
Alocioi-1260	322-Ja05141	QA	70	09				Pass	Ovalifying
Test	Lab Sample ID	Source	Units	Result 1			Acceptance Limits	Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S22-Ja01773	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S21-De59666	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-De59666	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-De59666	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S22-Ja01773	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene						<1	30%	Pass	
	S22-Ja01773	NCP	mg/kg	< 0.1	< 0.1	< I		1 000	
Ethylbenzene			mg/kg mg/kg		1			Pass	
Ethylbenzene m&p-Xvlenes	S22-Ja01773	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-Ja01773 S22-Ja01773	NCP NCP	mg/kg mg/kg	< 0.1 < 0.2	< 0.1 < 0.2	<1 <1	30% 30%	Pass Pass	
m&p-Xylenes o-Xylene	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773	NCP NCP NCP	mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1	< 0.1 < 0.2 < 0.1	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total*	S22-Ja01773 S22-Ja01773	NCP NCP	mg/kg mg/kg	< 0.1 < 0.2	< 0.1 < 0.2	<1 <1	30% 30%	Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773	NCP NCP NCP	mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3	< 0.1 < 0.2 < 0.1 < 0.3	<1 <1 <1 <1	30% 30% 30%	Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773	NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3	< 0.1 < 0.2 < 0.1 < 0.3	<1 <1 <1 <1 RPD	30% 30% 30% 30%	Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$0ns - 2013 NEPM Fract \$22-Ja01773	NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773	NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3	< 0.1 < 0.2 < 0.1 < 0.3	<1 <1 <1 <1 RPD	30% 30% 30% 30%	Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$000 - 2013 NEPM Fract \$22-Ja01773 \$22-Ja01773	NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate Polycyclic Aromatic Hydrocarbo	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$000 - 2013 NEPM Fract \$22-Ja01773 \$22-Ja01773	NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773	NCP NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 Result 1 < 0.5	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 Result 2 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate Polycyclic Aromatic Hydrocarb Acenaphthene Acenaphthylene	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$21-De58631 \$21-De58631	NCP NCP NCP NCP ions NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 Result 1 < 0.5 < 20	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 Result 2 < 0.5 < 20	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene	S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S21-De58631 S21-De58631 S21-De58631	NCP NCP NCP Sions NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 Result 1 < 0.5 < 20 Column 1 Column 2 Column 2 Column 3 Column 3 Column 4 Column 4	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 Result 2 < 0.5 < 20 Column 4	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate Polycyclic Aromatic Hydrocarl Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631	NCP NCP NCP ions NCP NCP NCP NCP NCP NCP NCP NCP	mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 Result 1 < 0.5 < 0.5 < 0.5 < 0.5	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 Result 2 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631	NCP	mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate Polycyclic Aromatic Hydrocarl Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631	NCP NCP NCP Sions NCP	mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631	NCP	mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate Polycyclic Aromatic Hydrocarbo Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(b,fluoranthene Benzo(k)fluoranthene	S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S21-De58631 S21-De58631 S21-De58631 S21-De58631 S21-De58631 S21-De58631 S21-De58631 S21-De58631 S21-De58631	NCP	mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate Polycyclic Aromatic Hydrocarb Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene	S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S21-De58631	NCP	mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 Result 2 < 0.5 	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate Polycyclic Aromatic Hydrocarl Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	\$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$22-Ja01773 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631 \$21-De58631	NCP	mg/kg	< 0.1 < 0.2 < 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 Result 2 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
m&p-Xylenes o-Xylene Xylenes - Total* Duplicate Total Recoverable Hydrocarbo Naphthalene TRH C6-C10 Duplicate Polycyclic Aromatic Hydrocarb Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(k)fluoranthene Chrysene	S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S22-Ja01773 S21-De58631	NCP	mg/kg	< 0.1 < 0.2 < 0.1 < 0.3 Result 1 < 0.5 < 20 Result 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	 < 0.1 < 0.2 < 0.1 < 0.3 Result 2 < 0.5 < 20 Result 2 < 0.5 	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Report Number: 852456-S

Duplicate									
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Indeno(1.2.3-cd)pyrene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<u><1</u>	30%	Pass	
Phenanthrene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	321-De30031	INCF	l Hig/kg		₹ 0.5		30 /0	Fass	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-De58631	NCP		< 0.05	< 0.05	<u><1</u>	30%	Pass	
Endosulfan I	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<u><1</u> <1	30%	Pass	
Endosulfan II	S21-De58631 S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan il Endosulfan sulphate	S21-De58631 S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulian sulphate Endrin	S21-De58631 S21-De58631	NCP	mg/kg mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<u><1</u> <1	30%	Pass	
Endrin aldenyde Endrin ketone	S21-De58631	NCP		< 0.05	< 0.05	<u><1</u> <1	30%	Pass	
	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<u><1</u>	30%	Pass	
g-HCH (Lindane)	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<u><1</u>	30%	Pass	
Heptachlor Heptachlor epoxide	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<u><1</u>	30%	Pass	
Hexachlorobenzene	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<u><1</u>	30%	Pass	
Methoxychlor	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<u><1</u>	30%	Pass	
Toxaphene	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<u><1</u> <1	30%	Pass	
Duplicate	321-De36631	INCF	mg/kg	< 0.5	< 0.5	<1	30%	Fass	
Polychlorinated Biphenyls				Result 1	Result 2	RPD		T	
	S21-De58631	NCP	mg/kg	< 0.1	< 0.1		30%	Pass	
Aroclor-1016 Aroclor-1221	S21-De58631	NCP		< 0.1	< 0.1	<1 <1	30%	Pass	
Aroclor-1232	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<u><1</u>	30%	Pass	
Aroclor-1242	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<u><1</u>	30%	Pass	
Aroclor-1248	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<u><1</u>	30%	Pass	
Aroclor-1254	S21-De58631	NCP	mg/kg mg/kg	< 0.1	< 0.1	<u><1</u>	30%	Pass	
Aroclor-1260	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	321-De30031	INCI	l Hig/kg		<u> </u>		30 70	1 033	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S21-De59666	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-De59666	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-De59666	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	32. 200000		9/10	1 100	100		0070	. 433	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-De58038	NCP	mg/kg	5.6	8.0	36	30%	Fail	Q15
Cadmium	S21-De58038	NCP	mg/kg	< 0.4	< 0.4	<u> </u>	30%	Pass	Q IJ
Chromium	S21-De58038	NCP	mg/kg	9.3	12	21	30%	Pass	
Copper	S21-De58038	NCP	mg/kg	28	39	32	30%	Fail	Q15
Lead	S21-De58038	NCP	mg/kg	14	18	27	30%	Pass	
Mercury	S21-De58038	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-De58038	NCP	mg/kg	5.3	7.1	29	30%	Pass	
Zinc	S21-De58038	NCP	mg/kg	27	37	29	30%	Pass	
Duplicate	021 De30030	INOF	i ilig/kg			23	JU /0	1 033	
Duplicate				Result 1	Result 2	RPD			
% Moisture	N21-De51889	NCP	0/.	17	19		300/	Pass	
% Moisture	112 1-DE0 1009	%	1 17	19	8.0	30%	rass		

Duplicate														
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD								
pH-F (Field pH test)*	N21-De52387	CP	pH Units	8.6	8.7	pass	30%	Pass						
Duplicate														
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD								
pH-F (Field pH test)*	N21-De52389	СР	pH Units	8.6	8.8	pass	30%	Pass						

Report Number: 852456-S

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

G01 The LORs have been raised due to matrix interference

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to

N07 the total of the two co-eluting PAHs

The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction.

Authorised by:

N02

Q15

S05

Emma Beesley Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) John Nguyen Senior Analyst-Metal (NSW) Myles Clark Senior Analyst-SPOCAS (QLD) Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 852456-S

5 DAY TAT ADDITIONAL ANALYSIS:FW: Eurofins Test Results, Invoice - Report 852456 : Site KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM (12552168)

Andrew Black < Andrew Black @eurofins.com >

Tue 2/15/2022 11:27 AM

To: #AU03_EnviroSampleBris < EnviroSampleBris@eurofins.com>

INFO: INTERNAL EMAIL - Sent from your own Eurofins email domain.

5 day TAT additional analysis thanks team for CrSuite

Andrew Black

Analytical Services Manager

Eurofins | Environment Testing Australia Pty Ltd

Unit 7 7 Friesian Close SANDGATE, NSW, 2304

AUSTRALIA

Phone: +61 2 9900 8490 Mobile: +61 410 220 750

Email: AndrewBlack@eurofins.com

Website: eurofins.com.au/environmental-testing

This e-mail including its attachments may contain confidential and proprietary information. Any unauthorized disclosure or use of this e-mail including its attachments is prohibited and may be prosecuted. If you are not the intended recipient, please inform the sender by an e-mail reply and delete the message. Transmission by e-mail is not secure and can result in errors or omissions in the content of the message. Despite state-of-the-art precautions we cannot guarantee that e-mails and attachments are free from viruses. We accept no liability for viruses or any transmission-related errors and omissions. You need to always virus-check any e-mails and attachments.

Eurofins companies are independent legal entities that are bound only by members of their management bodies. No other persons have representation power unless specifically authorised by proxy or other legal means.

For sample receipt enquiries (eg. SRAs, changes to analysis) please contact <u>EnvirosampleNSW@eurofins.com</u> or 02 9900 8421 (7am – 9pm).

For despatch enquiries (eg. courier bookings, bottle orders) please contact <u>AU04_Despatch_SYD@eurofins.com</u> or 0488 400 929 (8am – 4pm).

864020

From: Alison Monkley <Alison.Monkley@ghd.com>

Sent: Tuesday, 15 February 2022 12:26 PM
To: Andrew Black < AndrewBlack@eurofins.com>

Subject: Eurofins Test Results, Invoice - Report 852456 : Site KOORAGANG ISLAND BILLBOARD

GEOTECH/CONTAM (12552168)

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Andrew,

Can you please organise ASS CRS for the following samples

BH013.5m De 52386 OHJA013

BH016.5m De 52388

BH02 2m De 5 2 3 9 2
BH02 4m De 5 2 3 9 3

BSDE332 H=331

Thanks

ΑI

Alison Monkley

B.Eng (Env), B.Sc, ME (groundwater)

Business Group Leader – Contamination Assessment and Remediation GHD

Proudly employee-owned | ghd.com

Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle, NSW, 2300, Australia D +61 2 4979 9990 M +61 447 108 208 E alison.monkley@ghd.com

Connect

Please consider the environment before printing this

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We NATA # 1261 Site # 1254

Unit F3 Building F NATA # 1261 Site # 18217

Brisbane NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

GHD Pty Ltd NEWCASTLE

Contact name:

Alison Monkley

Project name:

KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID: Turnaround time:

12552168 5 Day

Date/Time received

Feb 15, 2022 11:27 AM

Eurofins reference

864020

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt: 17.9 degrees

Celsius.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Alison Monkley - alison.monkley@ghd.com.au.

Note: A copy of these results will also be delivered to the general GHD Pty Ltd NEWCASTLE email address.

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Received:

Contact Name:

Priority:

Due:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450

IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

GHD Pty Ltd NEWCASTLE

Address: 3/24 Honeysuckle Dve

Newcastle

NSW 2300

Project Name:

KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID:

12552168

Order No.: Report #:

Fax:

Eurofins Environment Testing Australia Pty Ltd

864020

Phone: 02 4979 9999

02 4979 9988

Eurofins Analytical Services Manager: Andrew Black

5 Day

NZBN: 9429046024954

Feb 22, 2022

Alison Monkley

Feb 15, 2022 11:27 AM

		Sa	mple Detail			Chromium Reducible Sulfur Suite	Moisture Set
Melb	ourne Laborate	ory - NATA # 12	61 Site # 125	4			
Sydı	ney Laboratory	- NATA # 1261	Site # 18217				
Bris	bane Laborator	y - NATA # 126 ²	1 Site # 2079	4		Х	Х
May	field Laboratory	/ - NATA # 1261	Site # 25079				
		NATA # 2377 Si	te # 2370				
	rnal Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	BH01 3.5M	Dec 16, 2021		Soil	B22-Fe32649	Х	Х
2	BH01 6.5M	Dec 16, 2021		Soil	B22-Fe32650	Х	Х
3	BH02 2M	Dec 16, 2021		Soil	B22-Fe32651	Х	Х
4	BH02 4M	Dec 16, 2021		Soil	B22-Fe32652	Х	Х
Test	Counts					4	4

GHD Pty Ltd 3/24 Honeysuckle Dve Newcastle NSW 2300

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Alison Monkley

Report 864020-S-V2

Project name KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID 12552168
Received Date Feb 15, 2022

Client Sample ID			BH01 3.5M	BH01 6.5M	BH02 2M	BH02 4M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			B22-Fe32649	B22-Fe32650	B22-Fe32651	B22-Fe32652
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Actual Acidity (NLM-3.2)						
pH-KCL (NLM-3.1)	0.1	pH Units	8.3	6.5	8.1	8.0
Titratable Actual Acidity (NLM-3.2)	0.003	% pyrite S	< 0.003	< 0.003	< 0.003	< 0.003
Titratable Actual Acidity (NLM-3.2)	2	mol H+/t	< 2	< 2	< 2	< 2
Potential Acidity - Chromium Reducible Sulfur	•	•				
Chromium Reducible Sulfur (s-SCr) (NLM-2.1) ^{S04}	0.005	% S	0.076	0.074	0.16	0.55
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	3	mol H+/t	47	46	100	340
Extractable Sulfur						
Sulfur - KCI Extractable	0.005	% S	N/A	N/A	N/A	N/A
HCI Extractable Sulfur	0.005	% S	N/A	N/A	N/A	N/A
Retained Acidity (S-NAS)						
Net Acid soluble sulfur (SNAS) NLM-4.1	0.02	% S	N/A	N/A	N/A	N/A
Net Acid soluble sulfur (s-SNAS) NLM-4.1 ^{S02}	0.02	% S	N/A	N/A	N/A	N/A
Net Acid soluble sulfur (a-SNAS) NLM-4.1	10	mol H+/t	N/A	N/A	N/A	N/A
HCI Extractable Sulfur Correction Factor	1	factor	2.0	2.0	2.0	2.0
Acid Neutralising Capacity (ANCbt)						
Acid Neutralising Capacity - (ANCbt) (NLM-5.2)	0.01	% CaCO3	1.5	N/A	2.0	1.4
Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) ^{S03}	0.02	% S	0.48	N/A	0.63	0.44
Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2)	2	mol H+/t	300	N/A	390	270
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
Net Acidity (Including ANC)						
CRS Suite - Net Acidity - NASSG (Including ANC)	0.02	% S	< 0.02	0.07	< 0.02	0.26
CRS Suite - Net Acidity - NASSG (Including ANC)	10	mol H+/t	< 10	46	< 10	160
CRS Suite - Liming Rate - NASSG (Including ANC) ^{S01}	1	kg CaCO3/t	< 1	3.5	< 1	12
Extraneous Material						
<2mm Fraction	0.005	g	30	24	26	30
>2mm Fraction	0.005	g	< 0.005	< 0.005	< 0.005	< 0.005
Analysed Material	0.1	%	100	100	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1
Net Acidity (Excluding ANC)						
CRS Suite - Net Acidity - NASSG (Excluding ANC)	0.02	% S	0.08	0.07	0.16	0.55
CRS Suite - Net Acidity - NASSG (Excluding ANC)	10	mol H+/t	47	46	100	340
CRS Suite - Liming Rate - NASSG (Excluding ANC)	1	kg CaCO3/t	3.6	3.5	7.6	26
% Moisture	1	%	22	18	35	32

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chromium Reducible Sulfur Suite			
Chromium Suite	Brisbane	Feb 17, 2022	6 Week
- Method: LTM-GEN-7070 Chromium Reducible Sulfur Suite			
Extraneous Material	Brisbane	Feb 17, 2022	6 Week
- Method: LTM-GEN-7050/7070			
Chromium Suite - NASSG (Excluding ANC)	Brisbane	Mar 08, 2022	6 Week
- Method: LTM-GEN-7070 Chromium Reducible Sulfur Suite			
% Moisture	Brisbane	Feb 17, 2022	14 Days

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool WA 6106 Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

GHD Pty Ltd NEWCASTLE

Address: 3/24 Honeysuckle Dve

Newcastle

NSW 2300

Project Name:

KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM

Project ID:

12552168

Order No.: Report #:

864020

Phone: 02 4979 9999

02 4979 9988 Fax:

Received: Feb 15, 2022 11:27 AM

NZBN: 9429046024954

Due: Feb 22, 2022 **Priority:** 5 Day

Contact Name: Alison Monkley

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Chromium Reducible Sulfur Suite	Moisture Set					
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4								
Sydn	ey Laboratory	- NATA # 1261 :	Site # 18217									
Brisk	oane Laboratory	y - NATA # 1261	Site # 20794	1		Х	Х					
Mayf	ield Laboratory	- NATA # 1261	Site # 25079									
Perth	Laboratory - N	IATA # 2377 Sit	e # 2370									
Exte	rnal Laboratory											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	BH01 3.5M	Dec 16, 2021		Soil	B22-Fe32649	Х	Х					
2	BH01 6.5M	Dec 16, 2021		Soil	B22-Fe32650	Х	Х					
3	BH02 2M	Dec 16, 2021		Soil	B22-Fe32651	Х	Х					
4 BH02 4M Dec 16, 2021 Soil B22-Fe32652												
Test	Counts					4	4					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/k: milligrams per litre $\mu g/k$: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery									
Actual Acidity (NLM-3.2)									
pH-KCL (NLM-3.1)			%	101			80-120	Pass	
Titratable Actual Acidity (NLM-3.2)			%	95			80-120	Pass	
LCS - % Recovery					1		1		
Potential Acidity - Chromium Redu									
Chromium Reducible Sulfur (s-SCr)	(NLM-2.1)		%	104			80-120	Pass	
LCS - % Recovery					T I			Γ	
Extractable Sulfur								_	
HCI Extractable Sulfur			%	101			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Actual Acidity (NLM-3.2)		1		Result 1	Result 2	RPD			
pH-KCL (NLM-3.1)	S22-Fe31816	NCP	pH Units	4.9	4.9	<1	30%	Pass	
Titratable Actual Acidity (NLM-3.2)	S22-Fe31816	NCP	% pyrite S	0.030	0.030	1.0	30%	Pass	
Titratable Actual Acidity (NLM-3.2)	S22-Fe31816	NCP	mol H+/t	20	20	1.0	30%	Pass	
Duplicate									
Potential Acidity - Chromium Redu	ıcible Sulfur	1	1	Result 1	Result 2	RPD			
Chromium Reducible Sulfur (s-SCr) (NLM-2.1)	S22-Fe31816	NCP	% S	< 0.005	< 0.005	<1	30%	Pass	
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	S22-Fe31816	NCP	mol H+/t	< 3	< 3	<1	30%	Pass	
Duplicate					1 1			ı	
Extractable Sulfur				Result 1	Result 2	RPD			
Sulfur - KCl Extractable	S22-Fe31816	NCP	% S	N/A	N/A	N/A	30%	Pass	
HCl Extractable Sulfur	S22-Fe31816	NCP	% S	N/A	N/A	N/A	30%	Pass	
Duplicate					1 1			Ι	
Retained Acidity (S-NAS)		1		Result 1	Result 2	RPD			
Net Acid soluble sulfur (SNAS) NLM-4.1	S22-Fe31816	NCP	% S	N/A	N/A	N/A	30%	Pass	
Net Acid soluble sulfur (s-SNAS) NLM-4.1	S22-Fe31816	NCP	% S	N/A	N/A	N/A	30%	Pass	
Net Acid soluble sulfur (a-SNAS) NLM-4.1	S22-Fe31816	NCP	mol H+/t	N/A	N/A	N/A	30%	Pass	
Duplicate					I I		1		
Acid Neutralising Capacity (ANCbt Acid Neutralising Capacity -)			Result 1	Result 2	RPD			
(ANCbt) (NLM-5.2)	S22-Fe31816	NCP	% CaCO3	N/A	N/A	N/A	30%	Pass	
Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2)	S22-Fe31816	NCP	% S	N/A	N/A	N/A	30%	Pass	
ANC Fineness Factor	S22-Fe31816	NCP	factor	1.5	1.5	<1	30%	Pass	
Duplicate									
Net Acidity (Including ANC)		T	1	Result 1	Result 2	RPD			
CRS Suite - Net Acidity - NASSG (Including ANC)	S22-Fe31816	NCP	% S	0.03	0.03	1.0	30%	Pass	
CRS Suite - Net Acidity - NASSG (Including ANC)	S22-Fe31816	NCP	mol H+/t	20	20	1.0	30%	Pass	
CRS Suite - Liming Rate - NASSG (Including ANC)	S22-Fe31816	NCP	kg CaCO3/t	1.5	1.5	1.0	30%	Pass	
Duplicate									
					Result 2	RPD			
% Moisture	B22-Fe26334	NCP	%	23	23	<1	30%	Pass	

Comments

V2- new version to include the ANC liming on all samples as per client request.

Eurofins | Environment Testing accreditation number 1261, site 18217 is currently in progress of a controlled transition to a new custom built location at 179 Magowar Road, Girraween, NSW 2145. All results on this report denoted as being performed by Eurofins | Environment Testing Unit F3, Building F, 16 Mars road, Lane Cove West, NSW 2066, corporate site 18217, will have been performed on either Lane Cove or new Girraween site

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil' multiply 'reported results' x 'wet bulk density of soil in t/m3' S01

S02 Retained Acidity is Reported when the pHKCl is less than pH 4.5

S03 Acid Neutralising Capacity is only required if the pHKCl if greater than or equal to pH 6.5 S04 Acid Sulfate Soil Samples have a 24 hour holding time unless frozen or dried within that period

Authorised by:

Andrew Black Analytical Services Manager Myles Clark Senior Analyst-SPOCAS (QLD)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix E

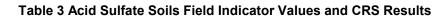
Contamination laboratory result summary tables

1	Inorg				М	letals							BTEXN	1					TR	H - NEP	M 2013				PAHs - standard 16																	
	Moisture Content (%)	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	Naphthalene	F1 (C6-C10 minus BTEX)	C6-C10 Fraction	F2 (>C10-C16 minus	>C10-C16 Fraction	F3 (>C16-C34 Fraction)	F4 (>C34-C40 Fraction)	>C10-C40 (Sum of Total)	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo[b+j]fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Phenanthrene	Pyrene	PAHs (Sı	Total 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc	Total 8 PAHs (as BaP TEQ) (half LOR) - Lab Calc	Total 8 PAHs (as BaP TEQ)(full LOR) - Lab Calc
	%	mg/kg	mg/kg	mg/kg	mg/kg	g mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g mg/kg		g mg/k	g mg/k		g mg/kg						mg/kg	mg/kg	mg/kg			mg/kg	mg/kg	mg/kg					mg/kg	mg/kg	mg/kg
LOR	1	2	0.4	5	5	5	0.1	5	5	0.1	0.1	0.1	0.1	0.2	0.3	0.5	20	20	50	50	100	100	100	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
NEPM 2013 EIL-Commercial/Industrial		160		530	830	1,800)	290	620							370																										
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Fine Soil										95	135	185			95		215			170	2,50	6,600)					1.4														
INEPM 2013 Table 1A(1) HIL D Comm/Ind		3,000	900	3,600	240,00	0 1,500	730	6,000	400,000																														4,000	40	40	40
NEPM 2013 Table 1A(3) HSL D Comm/Ind Soil for Vapour Intrus	ion, Sa	nd																																								
NEPM 2013 Table 1A(3) HSL D Comm/Ind Soil for Vapour Intrus 0m - 1m										3	NL	NL			230	NL	260		NL																							
1m - 2m										3	NL	NL			NL	NL	370		NL																							
1m - 2m 2m - 4m										3	NL	NL			NL	NL	630		NL																							
>4m										3	NL	NL			NL	NL	NL		NL																							

				Lab																																										
Location				Report																																										
		Field ID																																												
BH01	16/12/202	21 BH01 0-0.2N	И 0-0.2M	852456	7.8	6	< 0.4	14	16	13	< 0.1	8.9	58	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	< 0.5	<20	<20	<100	<100	<200	<200	<200	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	1.2
BH01		BH01 0.9-1	И 0.9-1M	852456	1.8	<2	< 0.4	<5	<5	<5	< 0.1	<5	12	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	< 0.5	<20	<20	<50	<50	<100	<100	<100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	1.2
BH01		BH01 3M	3M	852456	16	2.2	< 0.4	7.1	6.4	26	< 0.1	6.9	170	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	< 0.5	<20	<20	<50	<50	<100	<100	<100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	1.2
BH02		BH02 0-0.2N	И 0-0.2M	852456	13	<2	< 0.4	<5	<5	<5	< 0.1	<5	25	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	< 0.5	<20	<20	<50	<50	<100	<100	<100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	1.2
BH02		BH02 1M	1M	852456	20	<2	< 0.4	5.6	<5	7.3	< 0.1	<5	61	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	< 0.5	<20	<20	<50	<50	<100	<100	<100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	1.2
BH02		BH02 2M	2M	852456	22	3.2	< 0.4	28	16	39	< 0.1	23	260	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.3	< 0.5	<20	<20	<50	<50	<100	<100	<100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	1.2

							OC Pe	sticides										OC	Pesticio	les							PC	<u>Bs</u>			
	4,4'-DDE	a-BHC	Aldrin	Aldrin + Dieldrin	р-внс	Chlordane	д-внс	4,4 DDD	4,4 DDT	DDT+DDE+DDD - Lab Calc	Dieldrin	Endosulfan I (alpha)	Endosulfan II (beta)	Endosulfan Sulfate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Methoxychlor	Toxaphene	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Total)
			mg/kg			mg/kg		mg/kg				mg/kg				mg/kg				mg/kg	µg/kg	mg/kg	mg/kg			µg/kg	μg/kg	μg/kg	µg/kg	μg/kg	µg/kg
LOR	0.05	0.05	0.05	0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	50	0.05	0.5	100	100	100	100	100	100	100	100
NEPM 2013 EIL-Commercial/Industrial									640	640																					
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Fine Soil																															
NEPM 2013 Table 1A(1) HIL D Comm/Ind				45		530				3,600					100				50		80,000	2,500	160								7,000
NEPM 2013 Table 1A(3) HSL D Comm/Ind Soil for Vapour Intrus																															
0m - 1m																															
1m - 2m											,										,										
2m - 4m																															
>4m																							-								

				Lab																															
Location				Report																															
Code	Date	Field ID	Depth	Number																															
BH01	16/12/2021	BH01 0-0.2M	0-0.2M	852456	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 500	< 0.5	<10	<1,000	<1,000	<1,000<	<1,000	<1,000<	<1,000	<1,000<	:1,000
BH01		BH01 0.9-1M	0.9-1M	852456	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<50	< 0.05	< 0.5	<100	<100	<100	<100	<100	<100	<100	<100
BH01		BH01 3M	3M	852456	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<50	< 0.05	< 0.5	<100	<100	<100	<100	<100	<100	<100	<100
BH02		BH02 0-0.2M	0-0.2M	852456	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<50	< 0.05	< 0.5	<100	<100	<100	<100	<100	<100	<100	<100
BH02		BH02 1M	1M	852456	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<50	< 0.05	< 0.5	<100	<100	<100	<100	<100	<100	<100	<100
BH02		BH02 2M	2M	852456	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<50	< 0.05	< 0.5	<100	<100	<100	<100	<100	<100	<100	<100



														/ PAI	H PAHs	-																							
				Metals	3				B1	EXN		1	999	S	standa	a	00	Pestici	des									0	C Pest	ticides								F	PCBs
	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Benzene	Toluene	Ethylbenzene	Xylene Total	C6-C9 Fraction	C10-C36 (Sum of Total)	Benzo(a)pyrene	PAHs (Sum of total) - Lab calc	4,4'-DDE	a-BHC	Aldrin	Aldrin + Dieldrin	р-ВНС	Chlordane	д-внс	4,4 DDD	4,4 DDT	DDT+DDE+DDD - Lab Calc	Dieldrin	Endosulfan I (alpha)	Endosulfan II (beta)	Endosulfan Sulfate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Methoxychlor	Toxaphene	PCBs (Total)
	mg/kg	mg/kg	mg/kg	g mg/kg	mg/k	g mg/kg	mg/kg	mg/kg	mg/k	g mg/k	g mg/kg	g mg/kg	mg/k	g mg/l	kg mg/kg	g mg/k								mg/kg i	ng/kg	mg/kg	mg/kg i	mg/kg r	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg i	mg/kg	μg/kg n	ng/kg m	g/kg μ	ıg/kg
LOR	2	0.4	5	5	5	0.1	5	0.1	0.1	0.1	0.3	20	50	0.5	0.5	0.05	0.05	0.05	0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	50	0.05	0.5	100
NSW EPA (2014) General Solid Waste CT1 (No Leaching)	100	20	100		100	4	40	10	288			650 ^{#1}			200	<50	<50	<50		<50	<50	<50	<50	<50	<50	<50				<50	<50		<50					5	0,000
NSW EPA (2014) Restricted Solid Waste CT2 (No Leaching)	400	80	400		400	16	160	40	1,152	2,400	4,000	2,600#	40,000	3.2	800	<50	<50	<50		<50	<50	<50	<50	<50	<50	<50				<50	<50		<50					5	0,000

Table 2 Waste Classification

Location Code	[Field ID	Dept	h Lab Re	port Nu	mber																																					
BH01	BH01 0-0.2N	0-0.21	M 852456	6	< 0.4	14	16	13	< 0.1	8.9	< 0.1	< 0.1	< 0.1	< 0.3	<20	180	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 500	< 0.5	<10 <	<1,000
BH01	BH01 0.9-1N	0.9-11	M 852456	<2	< 0.4	< 5	<5	<5	< 0.1	<5	< 0.1	< 0.1	< 0.1	< 0.3	<20	< 50	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<50	< 0.05	< 0.5	<100
BH01	BH01 3M	3M	852456	2.2	< 0.4	7.1	6.4	26	< 0.1	6.9	< 0.1	< 0.1	< 0.1	< 0.3	<20	59	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<50	< 0.05	< 0.5	<100
BH02	BH02 0-0.2N	0-0.21	M 852456	<2	< 0.4	< 5	<5	<5	< 0.1	<5	< 0.1	< 0.1	< 0.1	< 0.3	<20	< 50	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<50	< 0.05	< 0.5	<100
BH02	BH02 1M	1M	852456	<2	< 0.4	5.6	<5	7.3	< 0.1	<5	< 0.1	< 0.1	< 0.1	< 0.3	<20	< 50	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<50	< 0.05	<0.5	<100
BH02	BH02 2M	2M	852456	3.2	< 0.4	- 28	16	39	< 0.1	23	< 0.1	< 0.1	< 0.1	< 0.3	<20	< 50	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<50	< 0.05	< 0.5	<100

General Solid Waste - Less than CT1 or SCC1
Restricted Solid Waste - Exceeds General Solid Waste CT1 or SCC1
Hazardous Waste - Exceeds Restricted Solid Waste CT2 or SCC2

	ASS -	Field			NA		Inorganics	Particle Anal		ASS - pH	ASS - Ac	idity Trail	ASS - Po		Α	SS - AN	IC		ASS - A	cid Base Ac	counting		ASS - Lir	ming Rate
рНF	рНFох	рнF - рнFох	Reaction Ratings	HCI Extractable Sulfur Correction Factor	Analysed Material	Extraneous Material	Moisture Content (%)	>2mm Fraction	<2mm Fraction	рНКСІ	Titratable Actual Acidity	Titratable Actual Acidity (sulfur units)	Chromium Reducible Sulphur (acidity units)	Chromium Reducible Sulfur	Acid Neutralising Capacity (acidity units)	Acid Neutralising Capacity (sulfur units)	Acid N	Net Acidity including ACN (acidity units)	Net Acidity including ACN (sulfur units)	Net Acidity excluding ACN (acidity units)	Net Acidity excluding ACN (sulfur units)	ANC Fineness Factor	Liming Rate excluding ACN	Liming Rate including ACN
pH units	pH units	pH units	-	-	%	%	%	g	g	pH units	mole H+/t	% S	mole H+/t	% S	mole H+/t	% S	% CaCO3	mole H+/t	% S	mole H+/t	% S	-	kg CaCO3/t	kg CaCO3/t
0.1	0.1	0.1	0	1	0.1	0.1	1	0.005	0.005	0.1	2	0.003	3	0.005	2	0.02	0.01	10	0.02	10	0.02		1	1

Location				Lab Report																									
Code	Date	Field ID	Depth	Number																									
BH01	16/12/2021	BH01 0.9-1M	1 0.9-1M	852456	8.6	7	1.6	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
BH01		BH01 2.5M	2.5M	852456	9	7.5	1.5	1	-	ı	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-		-
BH01		BH01 3.5M	3.5M	852456	8.3	4.9	3.4	3	2.0	100	< 0.1	22	< 0.005	30	8.3	<2	< 0.003	47	0.076	300	0.48	1.5	<10	< 0.02	47	0.08	1.5	3.6	<1
BH01		BH01 5M	5M	852456	8.6	7.6	1.0	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
BH01		BH01 6.5M	6.5M	852456	6.8	2.5	4.3	4	2.0	100	< 0.1	18	< 0.005	24	6.5	<2	< 0.003	46	0.074	-	-	-	46	0.07	46	0.07	1.5	3.5	3.5
BH01		BH01 8.5M	8.5M	852456	8.6	5.9	2.7	1	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-
BH02		BH02 1M	1M	852456	8.5	8.1	0.4	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
BH02		BH02 2M	2M	852456	8.5	5.5	3.0	4	2.0	100	< 0.1	35	< 0.005	26	8.1	<2	< 0.003	100	0.16	390	0.63	2.0	<10	< 0.02	100	0.16	1.5	7.6	<1
BH02		BH02 4M	4M	852456	9.1	2.3	6.8	4	2.0	100	< 0.1	32	< 0.005	30	8.0	<2	< 0.003	340	0.55	270	0.44	1.4	160	0.26	340	0.55	1.5	26	12
BH02		BH02 6.5M	6.5M	852456	8.7	8.6	0.1	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		-
BH02		BH02 8.5M	8.5M	852456	9.2	7.1	2.1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		-
BH02		BH02 9.5M	9.5M	852456	8.8	7.2	1.6	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	·	-

→ The Power of Commitment